Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T12:44:42.102Z Has data issue: false hasContentIssue false

The functional morphology of the larva, and the post-larval development of Venus striatula (Da Costa)

Published online by Cambridge University Press:  11 May 2009

Alan D. Ansell
Affiliation:
Department of Zoology, Glasgow University, and the Marine Station, Millport

Summary

The functional morphology of the veliger, pediveliger, and early post-larva of Venus striatula is described. Settlement takes place at a length of 220- 240 /u, and is marked by the rapid loss of the velum, functioning of the byssus gland, and commencement of secretion of the post-larval shell (dissoconch). With the exception of the loss of the velum, the changes which occur at metamorphosis take place relatively slowly. The significance to phylogeny of the mode of development of certain organs in the post-larva is discussed. It is concluded that the form of many of the organs in development, especially of those organs concerned in producing a respiratory and feeding current, are juvenile adaptations, resulting in the early functional re-adjustment of the free-swimming larval habit to a bottom-living habit, but having little or no phylogenetic significance.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. A., 1958. On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Phil. Trans. B, Vol. 241, pp. 421–84.Google Scholar
Ansell, A. D., 1961a. Reproduction, growth and mortality of Venus striatula (da Costa) in Kames Bay, Millport, Scotland. J. mar. biol. Assoc. U.K., Vol. 41, pp. 191215.CrossRefGoogle Scholar
Ansell, A. D., 1961b. The development of the primary gonad in Venus striatula (da Costa). Proc. malac. Soc. Lond., Vol. 34, pp. 243–47.Google Scholar
Ansell, A. D., 1961c. The functional morphology of the British species of Veneracea (Eulamellibranchia). J. mar. biol. Ass. U.K., Vol. 41, pp. 489515.Google Scholar
Atkins, D., 1937. On the ciliary mechanisms and inter-relationships of Lamellibranchs. III. Types of Lamellibranch gill and their food currents. Quart. J. micr. Set., Vol. 79, pp. 375419.Google Scholar
Baggerman, B., 1953. Spatfall and transport of Cardium edule L. Arch. Nierland. Zool., Vol. 10, pp. 315–42.CrossRefGoogle Scholar
Carriker, M. R., 1956. Biology and propagation of young hard clams, Mercenaria mercenaria. J. Elisha Mitchell sci. Soc, Vol. 72, pp. 5760.Google Scholar
Cole, H. A., 1937. Metamorphosis of the larva of Ostrea edulis. Nature, Lond., Vol. 139, p. 413.CrossRefGoogle Scholar
Cole, H. A., 1938. The fate of the larval organs in the metamorphosis of Ostrea edulis. J. mar. biol. Ass. U.K., Vol. 22, pp. 469–84.CrossRefGoogle Scholar
Drew, G. A., 1899. Some observations on the habits, anatomy and embryology of members of the Protobranchia. Anat. Anz., Vol. 15, pp. 493519.Google Scholar
Cole, H. A., 1901. The life history of Nucula delphinodonta. Quart. J. micr. Sci., Vol. 44, PP. 349–52.Google Scholar
Harms, W., 1909. Postembryonale Entwicklungsgeschichte der Unioniden. Zool. Jb., Abt. Anat., Bd. 27, pp. 325–86.Google Scholar
Hebers, K., 1913. Entwicklungsgeschichte von Anodonta cellensis, Schröt. Z. wiss.Zool., Bd. 108, pp. 1174.Google Scholar
Jackson, R. T., 1888. Development of the oyster. Proc. Boston Soc. nat. Hist., Vol. 23, PP. 531–56.Google Scholar
Jackson, R. T., 1890. Phylogeny of the Pelecypoda. Mem. Boston Soc. nat. Hist., Vol. 4, pp. 277400.Google Scholar
Jørgensen, C. B., 1946. Lamellibranchia. In Thorson, G. Reproduction and larval Development of Danish Marine Bottom Invertebrates, pp. 277484. Medd. Komm. Havundersag., Kbh., Ser. Plankton, Bd. 4, Nr. 1, 523 pp.Google Scholar
Lacaze-Duthiers, H. De, 1856. Mémoire sur le developpement des branchies des Mollusques Acephales Lamellibranches. Ann. Sci. nat. (Zool.), T. 5, pp. 547.Google Scholar
Macginitie, G. E., 1941. On the method of feeding of four Pelecypods. Biol. Bull., Woods Hole, Vol. 80, No. I, pp. 1825.CrossRefGoogle Scholar
Millar, R. H., 1955. Notes on the mechanism of food movement in the gut of the larval oyster, Ostrea edulis. Quart. J. micr. Sci., Vol. 96, pp. 539–44.Google Scholar
Owen, G., 1955. Observations on the stomach and digestive diverticula of the Lamellibranchia. I. The Anisomyaria and Eulamellibranchia. Quart. J. micr. Sci., Vol. 96, pp. 517–37–Google Scholar
Owen, G., 1958. Shell form, pallial attachment and the ligament in the Bivalvia. Proc. zool. Soc. Lond., Vol. 131, pp. 637–48.CrossRefGoogle Scholar
Owen, G., Trueman, E. R. & Yonge, C. M., 1953. The ligament in the Lamellibranchia. Nature, Lond., Vol. 171, p. 73.CrossRefGoogle ScholarPubMed
Prytherch, H. F., 1934. The role of copper in the setting, metamorphosis and distribution of the American oyster, Ostrea virginica. Ecol. Monogr., Vol. 4, pp. 49107.CrossRefGoogle Scholar
Quayle, D. B., 1952. Structure and biology of the larva and spat of Venerupis pullastra (Montagu). Trans, roy. Soc. Edinb.j Vol. 62, pp. 255–97.CrossRefGoogle Scholar
Rees, C. B., 1950. The interpretation and classification of lamellibranch larvae. Hull Bull. mar. Ecol., Vol. 3, pp. 73104.Google Scholar
Rice, E. L., 1908. Gill development in Mytilus. Biol. Bull, Woods Hole, Vol. 14, pp. 6177.Google Scholar
Ridewood, W. G., 1903. On the structure of the gills of the Lamellibranchia. Phil. Trans. B, Vol. 195, pp. 147284.Google Scholar
Ryder, J. A., 1884. The metamorphosis and post-larval stages of development of the oyster. Rep. U.S. Comm. Fish., Vol. 10, pp. 779–91.Google Scholar
Stafford, J., 1913. The Canadian Oyster: Its Development, Environment and Culture. Ottawa.Google Scholar
Steedman, H. F., 1950. Alcian Blue 8GS: a new stain for mucin. Quart. J. micr. Sci., Vol. 91, pp. 477–9.Google ScholarPubMed
Thorson, G., 1946. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to planktonic larvae in the Sound (Øresund). Medd. Komm. Havundersag., Kbh., Ser. Plankton, Bd. 4, No. 1, 523 pp.Google Scholar
Trueman, E. R., 1951. The structure, development and operation of the hinge ligament of Ostrea edulis. Quart. J. micr. Sci., Vol. 92, pp. 129–40.Google Scholar
Wilson, D. P., 1956. Some problems in larval ecology related to the localized distribution of bottom animals. In Buzzati-Traverso, A. A., (Ed.)Perspectives in Marine Biology, pp. 87103. Los Angeles and Berkeley: University of California Press, (1960).Google Scholar
Yonge, C. M., 1926. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. mar. Biol. Ass. U.K., Vol. 14, pp. 295386.Google Scholar
Yonge, C. M. 1947. The pallial organs in the Aspidobranch Gastropoda and their evolution throughout the Mollusca. Phil. Trans. B, Vol. 232, pp. 443518.Google Scholar
Yonge, C. M. 1957. Mantle fusion in the Lamellibranchia. Pubbl. Staz. Zool. Napoli, Vol. 24, pp. 151–71.Google Scholar
Zeigler, H. E., 1885. Die Entwickelung von Cyclas cornea, Lam. (Sphaerium corneum, L.). Z. iviss. Zool., Bd. 41, pp. 525–69.Google Scholar