Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-25T07:23:23.427Z Has data issue: false hasContentIssue false

First record of the phyllosoma larva of the pygmy locust lobster Scyllarus pygmaeus (Crustacea, Decapoda) in the eastern Mediterranean sea

Published online by Cambridge University Press:  10 May 2024

Tamar Guy-Haim*
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, P.O.B. 2336, Haifa 3102201, Israel
Anastasiia Iakovleva
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, P.O.B. 2336, Haifa 3102201, Israel Department of Maritime Civilizations, The Leon Recanati Institute for Maritime Studies, The Leon H. Charney School for Marine Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel
Khristina Ermak
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, P.O.B. 2336, Haifa 3102201, Israel
Ehud Spanier
Affiliation:
Department of Maritime Civilizations, The Leon Recanati Institute for Maritime Studies, The Leon H. Charney School for Marine Sciences, University of Haifa, Mount Carmel, Haifa 3498838, Israel
Arseniy R. Morov
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, P.O.B. 2336, Haifa 3102201, Israel
*
Corresponding author: Tamar Guy-Haim; Email: tamar.guy-haim@ocean.org.il

Abstract

Taxonomic intricacies and high interspecific similarity have hampered the identification of scyllarid phyllosoma larvae to the species level. The pygmy locust lobster, Scyllarus pygmaeus, is distributed across the Mediterranean Sea and in the eastern Atlantic; however, its phyllosoma larvae were previously recorded only from the western Mediterranean. We employed DNA barcoding using the mitochondrial COI gene to identify S. pygmaeus phyllosoma collected from the offshore waters of the southeastern Mediterranean Sea and described its morphology. We further discuss the lack of genetic structure in S. pygmaeus with potential implications for species connectivity and conservation.

Type
Marine Record
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bate, CS (1888) Report on the Crustacea Macrura collected by the “HMS Challenger” during the years 1873–76, 1942.Google Scholar
Booth, JD, Webber, WR, Sekiguchi, H and Coutures, E (2005) Diverse larval recruitment strategies within the Scyllaridae. New Zealand Journal of Marine and Freshwater Research 39, 581592.CrossRefGoogle Scholar
Faria, J, Froufe, E, Tuya, F, Alexandrino, P and Pérez-Losada, M (2013) Panmixia in the endangered slipper lobster Scyllarides latus from the Northeastern Atlantic and Western Mediterranean. Journal of Crustacean Biology 33, 557566.CrossRefGoogle Scholar
Fiedler, U and Spanier, E (1999) Occurrence of Scyllarus arctus (Crustacea, Decapoda, Scyllaridae) in the eastern Mediterranean – preliminary results. Annals for Istrian and Mediterranean Studies 17, 153158.Google Scholar
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Forest, J and Holthuis, LB (1960) The occurrence of Scyllarus pygmaeus (Bate) in the Mediterranean. Crustaceana 1, 156163.CrossRefGoogle Scholar
Holthuis, L (1991) FAO species catalogue. Vol. 13. Marine lobsters of the world. An Annotated and Illustrated Catalogue of Species of Interest to Fisheries Known to Date., 292.Google Scholar
Lacy, RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology 1, 143158.CrossRefGoogle Scholar
Lavalli, KL and Spanier, E (2007) The Biology and Fisheries of the Slipper Lobster. Boca Raton, USA: CRC Press.CrossRefGoogle Scholar
Lewinsohn, C (1974) The occurrence of Scyllarus pygmaeus (Bate) in the eastern Mediterranean (Decapoda, Scyllaridae). Crustaceana 27, 4346.CrossRefGoogle Scholar
Lewinsohn, C and Holthuis, L (1986) The Crustacea Decapoda of Cyprus. Zoologische verhandelingen 230, 164.Google Scholar
Lindley, J, Hernandez, F, Tejera, E and Correia, S (2004) Phyllosoma larvae (Decapoda: Palinuridea) of the Cape Verde Islands. Journal of Plankton Research 26, 235240.CrossRefGoogle Scholar
Mallol, S, Mateo-Ramírez, Á, Alemany, F, Álvarez-Berastegui, D, Díaz, D, López-Jurad, JL and Goñi, R (2014) Abundance and distribution of scyllarid phyllosoma larvae (Decapoda: Scyllaridae) in the Balearic Sea (Western Mediterranean). Journal of Crustacean Biology 34, 442452.CrossRefGoogle Scholar
Mura, MT and Pessani, D (1994) Descrizione del primo stadio larvale e notizie sul periodo riproduttivo di alcune specie di Decapodi. Biologia Marina Mediterranea 1, 391392.Google Scholar
Pagliarino, E, Massi, D, Canali, E, Costa, C, Pessani, D and Bianchini, M (2013) Findings of phyllosoma larvae and nistos of the family Scyllaridae (Crustacea, Decapoda) in the Southern Mediterranean Sea. The Open Marine Biology Journal 7, 8–13.CrossRefGoogle Scholar
Palero, F, Guerao, G and Abelló, P (2008) Morphology of the final stage phyllosoma larva of Scyllarus pygmaeus (Crustacea: Decapoda: Scyllaridae), identified by DNA analysis. Journal of Plankton Research 30, 483488.CrossRefGoogle Scholar
Palero, F, Guerao, G, Clark, PF and Abello, P (2009) The true identities of the slipper lobsters Nisto laevis and Nisto asper (Crustacea: Decapoda: Scyllaridae) verified by DNA analysis. Invertebrate Systematics 23, 7785.CrossRefGoogle Scholar
Pessani, D and Mura, M (2007) The biology of the Mediterranean scyllarids. In Lavalli KL and Spanier E (eds), The Biology and Fisheries of the Slipper Lobster. Boca Raton, USA: CRC Press, pp. 263286.CrossRefGoogle Scholar
Santucci, R (1925) Contributo allo studio dello sviluppo postembrionale degli Scyllaridea del Mediterraneo II: Scyllarus arctus. III: Scyllarides latus. Memoria. R. Comitato Talassografico Italiano 71, 116.Google Scholar
Sarato, C (1885) Études sur les Crustacés de Nice. Genre Arctus, Dana; Sous-genre Nisto, Nob. Moniteur des etrangers de Nice 9, 3.Google Scholar
Satoshi, M and Kuballa, AV (2007) Factors important in larval and postlarval molting, growth, and rearing. In Lavalli KL and Spanier E (eds), The Biology and Fisheries of the Slipper Lobster. Boca Raton, USA: CRC Press, pp. 91110.Google Scholar
Stephensen, K (1923) Decapoda-Macrura excl. Sergestidae (Penaeidae, Pasiphaeidae, Hoplocaridae, Nematocarcinidae, Scyllaridae, Eryonidae, Nephropsidae, Appendix). Report on the Danish Oceanographical Expeditions 1908–10 to the Mediterranean and Adjacent Seas 2, 185.Google Scholar
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38, 30223027.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Sato, R, Ishii, H, Akiba, T, Nogata, Y and Tanaka, Y (2012) Culture of phyllosomas of Ibacus novemdentatus (Decapoda: Scyllaridae) in a closed recirculating system using jellyfish as food. Aquaculture 330, 162166.CrossRefGoogle Scholar
Williamson, D (1969) Names of larvae in the Decapoda and Euphausiacea. Crustaceana 16, 210213.CrossRefGoogle Scholar