Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T01:38:32.915Z Has data issue: false hasContentIssue false

Factors influencing shell deposition during a tidal cycle in the intertidal bivalve Cerastoderma edule

Published online by Cambridge University Press:  11 May 2009

C. A. Richardson
Affiliation:
Department of Zoology, University College of North Wales, Deiniol Road, Bangor, Gwynedd
D. J. Crisp
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd
N. W. Runham
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd

Extract

The thin band between growth increments in the shell of Cerastoderma edule is laid down at the end of the period of emersion, when the pH of the mantle and extrapallial fluids are at a minimum of pH 7·0 and 7·2 respectively. The growth increment is formed during immersion when the pH of the extrapallial fluid is 7·5–7·7 and the mantle 7·6–7·8, which is close to that of sea water (pH 7·8).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crenshaw, M. A., 1972. The inorganic composition of molluscan extrapallial fluid. Biological Bulletin. Marine Biology Laboratory, Woods Hole, Mass., 143, 506512.CrossRefGoogle ScholarPubMed
Crenshaw, M. A. & Neff, J. M., 1969. Decalcification at the mantle-shell interface in molluscs. American Zoologist, 9, 881885.CrossRefGoogle Scholar
Dolman, J., 1975. Growth records in invertebrates and stromatolites. In Growth Rhythms and the History of the Earth's Rotation (ed. Rosenberg, G. D. and Runcorn, S. K.), pp. 191221. London: John Wiley & Sons.Google Scholar
Dugal, L. P., 1939. The use of calcareous shell to buffer the product of anaerobic glycolysis in Venus mercenaria. Journal of Cellular and Comparative Physiology, 13, 235251.CrossRefGoogle Scholar
Evans, J. W., 1972. Tidal growth increments in the cockle Clinocardium nuttalli. Science, New York, 176, 416417.CrossRefGoogle ScholarPubMed
Gordon, J. & Carriker, M. R., 1978. Growth lines in a bivalve mollusk: subdaily patterns and dissolution of the shell. Science, NewYork, 202, 519521.CrossRefGoogle Scholar
House, M. R. & Farrow, G. E., 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, London, 219, 13841386.CrossRefGoogle ScholarPubMed
Kobayashi, S., 1964. Studies on shell formation. X. A study of the proteins of the extrapallial fluid in some molluscan species. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 126, 414422.CrossRefGoogle Scholar
MacClintock, C. & Pannella, G., 1969. Time of calcification in the bivalve mollusk Mercenaria mercenaria (L.) during the 24 hour period. Abstract, Annual Meeting Geological Society of America, p. 140.Google Scholar
Morton, B., 1970. The tidal rhythm and rhythm of feeding and digestion in Cardium edule. Journal of the Marine Biological Association of the United Kingdom, 50, 499512.CrossRefGoogle Scholar
Pannella, G., 1975. Palaeontological clocks and the history of the Earth's rotation. In Growth Rhythms and the History of the Earth's Rotation (ed. Rosenberg, G. D. and Runcorn, S. K.), pp. 253284. London: John Wiley & Sons.Google Scholar
Revelle, R. & Fleming, R. H., 1934. The solubility product constant of calcium carbonate in sea water. In Proceedings of the Fifth Pacific Science Congress, vol. 3, Canada, 1933, pp. 20892092.Google Scholar
Richardson, C. A., Crisp, D. J. & Runham, N. W., 1979. Tidally deposited growth bands in the shell of the common cockle Cerastoderma edule (L.). Malacologia, 18, 277290.Google Scholar
Richardson, C. A., Crisp, D. J. & Runham, N. W., 1980 a. An endogenous rhythm in shell deposition in Cerastoderma edule. Journal of the Marine Biological Association of the United Kingdom, 60, 9911004.CrossRefGoogle Scholar
Richardson, C. A., Crisp, D. J. & Runham, N. W., 1980 b. Factors influencing shell growth in Cerastoderma edule. Proceedings of the Royal Society (B), 210, 513531.Google Scholar
Richardson, C. A., Crisp, D. J., Runham, N. W. & Gruffydd, Li. D., 1980. The use of tidal growth bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-arctic conditions. Journal of the Marine Biological Association of the United Kingdom, 60, 977989.CrossRefGoogle Scholar
Stolkowski, J., 1951. Essai sur le determinisme des formes minéralogiques du calcaire chez les êtres vivants (calcaires coquilliers). Annales de l'Institut océanographique, 26, 1113.Google Scholar
Wada, K., 1961. Crystal growth of molluscan shells. Bulletin of the National Pearl Research Laboratory, 7, 703828.Google Scholar
Wattenberg, H. & Timmerman, E., 1936. Über die Sättigung des Seewassers an CaCo3 und die anorganogene Bildung von Kalksedimenten. Annalen der Hydrographie und maritime Meterologie, 1936, 23–31.Google Scholar
Whyte, M. A., 1975. Time, tide and the cockle. In Growth Rhythms and the History of the Earth's Rotation (ed. Rosenberg, G. D. and Runcorn, S. K.), pp. 177189. London: John Wiley & Sons.Google Scholar
Wilbur, K. M., 1972. Shell formation in mollusks. In Chemical Zoology, vol. 7. Mollusca (ed. Florkin, M. and Scheer, B. T.), pp. 103145. New York: Academic Press.Google Scholar