Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T04:34:25.991Z Has data issue: false hasContentIssue false

Deep-sea shrimps Aristaeomorpha foliacea and Pleoticus robustus (Crustacea: Penaeoidea) in the Colombian Caribbean Sea as a new potential fishing resource

Published online by Cambridge University Press:  30 August 2011

Jorge Paramo*
Affiliation:
Universität Bremen, Leibniz-Zentrum für Marine Tropenökologie (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany Universidad del Magdalena, Grupo de Investigación Ciencia y Tecnología Pesquera Tropical (CITEPT), Cra. 32 No. 22-08 Avenida del Ferrocarril, Santa Marta, Colombia
Ulrich Saint-Paul
Affiliation:
Universität Bremen, Leibniz-Zentrum für Marine Tropenökologie (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
*
Correspondence should be addressed to: J. Paramo, Universität Bremen, Leibniz-Zentrum für Marine Tropenökologie (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany email: jorge.paramo@zmt-bremen.de

Abstract

In the Colombian Caribbean Sea a shallow water commercial shrimp fishery has been developed, targeting mainly Farfantepenaeus notialis. Yet, similarly to so many fisheries around the world, the exploitation of this shrimp is not regulated, and a significant depletion has resulted. This study investigates new fishing areas, exploring the poorly understood deep-sea habitats in the Colombian Caribbean Sea, to determine the potential for a viable deep shrimp fishery, studying their abundance and spatial distribution. We found high abundances for giant red shrimp (Aristaeomorpha foliacea) and royal red shrimp (Pleoticus robustus), both important commercially. The higher biomass of these two deep-sea shrimp species were found mainly in the northern zone of the Colombian Caribbean Sea, where the local oceanography is modulated by the seasonal upwelling with high productivity. The size-structure following depth strata showed that A. foliacea increase in size with the depth and the contrary for P. robustus. The majority of adult individuals in these two deep-sea shrimp species reflect the non-fished populations in the study area. However, more scientific assessment is necessary to determine life cycle population parameters of deep-sea shrimps and associated biodiversity before initiating a new commercial shrimp fishery.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, C.A., Barton, E.D. and Mooers, C.H.N.K. (2003) Evidence for an eastward flow along the Central and South American Caribbean coast. Journal of Geophysical Research 108, 111.CrossRefGoogle Scholar
Beddington, J.R., Agnew, D.J. and Clark, C.W. (2007) Current problems in the management of marine fisheries. Science 316, 17131716.CrossRefGoogle ScholarPubMed
Belcari, P., Viva, C., Mori, M. and de Ranieri, S. (2003) Fishery and biology of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda) in the Northern Tyrrenian Sea (western Mediterranean). Journal of Northwest Atlantic Fishery Science 31, 195204.CrossRefGoogle Scholar
Bianchi, G. (2008) The concept of the ecosystem approach to fisheries. In Bianchi, G. and Skjoldal, H.R. (eds) The ecosystem approach to fisheries. Wallingford, UK: CABI Publishing, pp. 2038.CrossRefGoogle Scholar
Cressie, N.A.C. and Hawkins, D.M. (1980) Robust estimation of the variogram. Mathematical Geology 12, 115125.CrossRefGoogle Scholar
Cressie, N.A.C. (1993) Statistics for spatial data. 1st edition. New York: Wiley-Interscience.CrossRefGoogle Scholar
Dallagnolo, R., Perez, J.A.A., Pezzuto, P.R. and Wahrlich, R. (2009) The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae) development and present status. Latin American Journal of Aquatic Research 37, 327346.CrossRefGoogle Scholar
D'Onghia, G., Tursi, A., Maiorano, P. and Panza, M. (1998) Distribution, biology, and population dynamics of Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Natantia, Aristeidae) in the north-western Ionian Sea (Mediterranean Sea). Crustaceana 71, 518544.CrossRefGoogle Scholar
Fraser, H.M., Greenstreet, S.P.R. and Piet, G.J. (2009) Selecting MPAs to conserve groundfish biodiversity: the consequences of failing to account for catchability in survey trawls. ICES Journal of Marine Science 66, 8289.CrossRefGoogle Scholar
Figueiredo, M.J., Figueiredo, I. and Machado, P.B. (2001) Deep-water penaeid shrimps (Crustacea: Decapoda) from off the Portuguese continental slope: an alternative future resource? Fisheries Research 51, 321326.CrossRefGoogle Scholar
Gotelli, N.J. and Ellison, A.M. (2004) A primer of ecological statistics. 1st edition. Sunderland, MA: Sinauer Associates.Google Scholar
Gracia, A., Vázquez-Bader, A.R., Lozano-Alvarez, E. and Briones-Fourzán, P. (2010) Deep-water shrimp (Crustacea: Penaeoidea) off the Yucatan peninsula (southern Gulf of Mexico): a potential fishing resource. Journal of Shellfish Research 29, 3743.CrossRefGoogle Scholar
Guillet, R. (2008) Global study of shrimp fisheries. FAO Fisheries Technical Paper No. 475, Rome: FAO.Google Scholar
Hilborn, R. and Walters, C. (1992) Quantitative fisheries stock assessment: choice, dynamics and uncertainty. New York: Chapman and Hall.CrossRefGoogle Scholar
Isaaks, E.H. and Srivastava, R.M. (1989) An introduction to applied geostatistics. 1st edition. Oxford: Oxford University Press.Google Scholar
Katsanevakis, S. and Maravelias, C.D. (2009) Bathymetric distribution of demersal fish in the Aegean and Ionian Seas based on generalized additive modelling. Fisheries Science 75, 1323.CrossRefGoogle Scholar
King, M. (2007) Fisheries biology, assessment and management. 2nd edition. Oxford: Blackwell Publishing.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology. Amsterdam: Elsevier Science.Google Scholar
MacDonald, P.D. and Pitcher, T.J. (1979) Age-groups from size–frequency data: a versatile and efficient method of analyzing distribution mixtures. Journal of the Fisheries Research Board of Canada 36, 9871001.CrossRefGoogle Scholar
Mello, L.G.S. and Rose, G.A. (2005) Using geostatistics to quantify seasonal distribution and aggregation patterns of fishes: an example of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 62, 659670.CrossRefGoogle Scholar
Mouffok, S., Massuti, E., Boutiba, Z., Guijarro, B., Ordines, F. and Fliti, K. (2008) Ecology and fishery of the deep-water shrimp, Aristeus antennatus (Risso, 1816) off Algeria (south-western Mediterranean). Crustaceana 81, 11771199.CrossRefGoogle Scholar
Papaconstantinou, C. and Kapiris, K. (2003) The biology of the giant red shrimp (Aristaeomorpha foliacea) at an unexploited fishing ground in the Greek Ionian Sea. Fisheries Research 62, 3751.CrossRefGoogle Scholar
Paramo, J. and Roa, R. (2003) Acoustic–geostatistical assessment and habitat–abundance relations of small pelagic fish from the Colombian Caribbean. Fisheries Research 60, 309319.CrossRefGoogle Scholar
Paramo, J., Quiñones, R.A., Ramirez, A. and Wiff, R. (2003) Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: an analysis based on hydroacoustic information. Aquatic Living Resources 16, 239245.CrossRefGoogle Scholar
Paramo, J., Guillot, L., Benavides, S., Rodríguez, A. and Sanchez, C. (2009) Aspectos poblacionales y ecológicos de peces demersales de la zona norte del Caribe colombiano en relación con el hábitat: una herramienta para identificar Áreas Marinas Protegidas (AMPs) para el manejo pesquero. Caldasia 31, 123144.Google Scholar
Paramo, J. and Saint-Paul, U. (2010) Morphological differentiation of southern pink shrimp Farfantepenaeus notialis in Colombian Caribbean Sea. Aquatic Living Resources 23, 95101.CrossRefGoogle Scholar
Pauly, D., Christensen, V., Guenette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R. and Zeller, D. (2002) Towards sustainability in world fisheries. Nature 418, 689695.CrossRefGoogle ScholarPubMed
Pauly, D., Alder, J., Bennett, E., Christensen, V., Tyedmers, P. and Watson, R. (2003) The future for fisheries. Science 21, 13591361.CrossRefGoogle Scholar
Petitgas, P. (1993) Geostatistics for fish stock assessments: a review and an acoustic application. ICES Journal of Marine Science 50, 285298.CrossRefGoogle Scholar
Petitgas, P. and Prampart, A. (1995) EVA: Estimation variance: a geostatistical software for structure characterization and variance computation. Editions Orstom. logOrstom.Google Scholar
Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E.D., Link, J., Livingston, P.A., Mangel, M., McAllister, M.K., Pope, J. and Sainsbury, K.J. (2004) Ecosystem-based fishery management. Science 305, 346347.CrossRefGoogle ScholarPubMed
Pitcher, T.J., Morato, T., Hart, P.J., Clark, M.R., Haggan, N. and Santos, R.S. (2007) Seamounts: ecology, fisheries and conservation. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
Politou, Ch-Y., Kapiris, K., Maiorano, P., Capezzuto, F. and Dokos, J. (2004) Deep-sea Mediterranean biology: the case of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda: Aristidae). Scientia Marina 68, 129139.Google Scholar
Ribeiro, P.J. and Diggle, P.J. (2001) geoR: a package for geostatistical analysis. R News 1, 1418.Google Scholar
Rivoirard, J., Simmonds, J., Foote, K.G., Fernandes, P. and Bez, N. (2000) Geostatistics for estimating fish abundance. 1st edition. Oxford: Blackwell Science.CrossRefGoogle Scholar
Stokstad, E. (2009) Détente in fisheries war. Science 324, 170171.CrossRefGoogle ScholarPubMed
Tavares, M. (2002) Shrimps. In Carpenter, K.E. (ed.) The living marine resources of the western central Atlantic, species identification guide for fisheries purposes. Rome: FAO, pp. 251291.Google Scholar
Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B.C., Lotze, H.K., Micheli, F., Palumbi, S.R., Sala, E., Selkoe, K.A., Stachowicz, J.J. and Watson, R. (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787790.CrossRefGoogle ScholarPubMed
Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., Costello, Ch., Fogarty, M.J., Fulton, E.A., Hutchings, J.A., Jennings, S., Jensen, O.P., Lotze, H.K., Mace, P.M., McClanahan, T.R., Minto, C., Palumbi, S.R., Parma, A.M., Ricard, D., Rosenberg, A.A., Watson, R. and Zeller, D. (2009) Rebuilding global fisheries. Science 325, 578585.CrossRefGoogle ScholarPubMed
Zar, J.H. (2009) Biostatistical analysis. 5th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Zhou, S., Smith, A.D.M., Punt, A.E., Richardson, A.J., Gibbs, M., Fulton, E.A., Pascoe, S., Bulman, C., Bayliss, P. and Sainsbury, K. (2010) Ecosystem-based fisheries management requires a change to selective fishing philosophy. Proceedings of the National Academy of Sciences of the United States of America 107, 94859489.CrossRefGoogle ScholarPubMed