Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T18:53:23.769Z Has data issue: false hasContentIssue false

Biometrics, Carbon and Nitrogen Content in Two Cnidarians: Urticina Felina and Alcyonium Digitatum

Published online by Cambridge University Press:  11 May 2009

A. Migné
Affiliation:
Station Marine, Université des Sciences et Technologies de Lille, URA 1363 du CNRS, BP 80, F-62930 Wimereux, France
D. Davoult
Affiliation:
Station Marine, Université des Sciences et Technologies de Lille, URA 1363 du CNRS, BP 80, F-62930 Wimereux, France
M.A. Janquin
Affiliation:
Station Marine, Université des Sciences et Technologies de Lille, URA 1363 du CNRS, BP 80, F-62930 Wimereux, France
A. Kupka
Affiliation:
Station Marine, Université des Sciences et Technologies de Lille, URA 1363 du CNRS, BP 80, F-62930 Wimereux, France

Extract

A biometrical study was conducted on two common cnidarians: Alcyonium digitatum (Octocorallia) and Urticina felina (Hexacorallia). The aim was to relate both the carbon and the nitrogen content of these species to a simple and rapid measurement. As the simplest measurement that can be done on A. digitatum is a measurement of size, relationships were determined between the height of a colony and its organic carbon (OC=0.0002 H2.0254, n=104, γ2=0·923) and nitrogen (N=0.00004 H2.0283, n=104, γ2=0.928) content. As no constant size could be determined on sea anemones, linear relationships were established between dry weight (DW) and organic carbon (OC=0.419 DW, n=65, r=0.995) and nitrogen (N=0.095 DW, n=65, r=0.997) content in U. felina. All these relationships were highly significant (P<0.1%) and appeared useful to express biomass of the two species in terms of carbon or nitrogen and then to consider dynamic processes such as respiration or excretion as fluxes of carbon and nitrogen.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon., , 1986. Fifth report of the Benthos Ecology Working Group. International Council for the Exploration of the Sea, Ostende (CM Papers and Reports), CM 1986/ L: 27, 33 pp.Google Scholar
Anon., , 1988. Courants de maree dans le Pas-de-Calais. Paris: Service Hydrographique et Océanographique de la Marine.Google Scholar
Boero, F., Balduzzi, A., Bavestrello, G., Caffa, B. & Cattaneo-Vietti, R., 1986. Population dynamics of Eudendrium glomeratum (Cnidaria: Anthomedusae) on the Portofino Promontory (Ligurian Sea). Marine Biology, 92, 8185.Google Scholar
Brey, T., Rumohr, H. & Ankar, S., 1988. Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. Journal of Experimental Marine Biology and Ecology, 117, 271278.Google Scholar
Cabioch, L. & Glacon, R., 1975. Distribution des peuplements benthiques en Manche orientale, de la baie de Somme au Pas-de-Calais. Comptes Rendus de I'Académie des Sciences. Paris, série D, 280, 491494.Google Scholar
Crisp, D.J., 1984. Energy flow measurements. In Methods for the study of marine benthos, 2nd ed. (ed. N.A., Holme and A.D., Mclntyre), pp. 284372. Oxford: Blackwells. [IPB handbook no. 16.]Google Scholar
Davoult, D., 1990. Biofacies et structure trophique du peuplement des cailloutis du Pas-de-Calais (France). Oceanologica Acta, 13, 335348.Google Scholar
Davoult, D., Degros, N., Janquin, M.A. & Soyez, B., 1992. Biometrics, carbon and nitrogen content in the ophiuroid Ophiothrix fragilis. Journal of the Marine Biological Association of the United Kingdom, 71, 915918.CrossRefGoogle Scholar
George, C.L. & Warwick, R.M., 1985. Annual macrofauna production in a hard-bottom reef community. Journal of the Marine Biological Association of the United Kingdom, 65, 713735.Google Scholar
Hartnoll, R.G., 1975. The annual cycle of Alcyonium digitatum. Estuarine and Coastal Marine Science, 3, 7178.Google Scholar
Hayward, P.J. & Ryland, J.S., ed., 1990. The marine fauna of the British Isles and north-west Europe, vols. 1 and 2. Oxford: Clarendon Press.Google Scholar
Hickson, S.J., 1895. The anatomy of Alcyonium digitatum. Quarterly Journal of Microscopical Science, 37, 343389.Google Scholar
Kristensen, E., 1993. Seasonal variations in benthic community metabolism and nitrogen dynamics in a shallow, organic-poor Danish lagoon. Estuarine, Coastal and Shelf Science, 36, 565586.Google Scholar
Larsonneur, C., Bouysee, P. & Auffret, J.P., 1982. The superficial sediments of the English Channel and its western approaches. Sedimentology, 29, 851864.Google Scholar
Matthews, A., 1917. The development of Alcyonium digitatum, with some notes on the early colony formation. Quarterly Journal of Microscopical Science, 62, 4393.Google Scholar
Migné, A. & Davoult, D., 1993. Relations ‘taille-poids’ chez quelques Cnidaires coloniaux. Cahiers de Biologie Marine, 34, 103110.Google Scholar
Migné, A. & Davoult, D., 1995 a. Multi-scale heterogeneity in a macrobenthic epifauna community. Hydrobiologia, 300/301, 375381.CrossRefGoogle Scholar
Migné, A. & Davoult, D., 1995 b. Role des organismes suspensivores dans les transferts pelagobenthiques d'une zone de fort hydrodynamisme: approche experimentale. Journal de Recherche Oceanographique, 20, 914.Google Scholar
O'neill, R., 1971. Function minimization using a simplex procedure. Algorithm AS 47. Applied Statistics, 21, 338345.Google Scholar
Widersten, B., 1965. On the morphology and development in some cnidarian larvae. Zoologiska Bidrag Från Uppsala, 37, 139182.Google Scholar