Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T23:55:03.581Z Has data issue: false hasContentIssue false

An Investigation of the Detritus in Menai Straits Plankton Samples

Published online by Cambridge University Press:  11 May 2009

R. A. Kenchington
Affiliation:
Marine Science Laboratories, University College of North Wales, Menai Bridge, Anglesey.

Extract

Suspended organic matter in the oceans has been studied by many authors. In a review of the subject Parsons (1963) states that the occurrence of detritus particles in the oceans seems to be a universal characteristic of sea water. The greatest concentrations of suspended organic matter are to be found in turbulent inshore water masses.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, F. A. J., 1958. Inorganic suspended matter in sea water. J. mar. Res., Vol. 17, pp. 2334.Google Scholar
Armstrong, F. A. J. & Atkins, W. R. G., 1950. The suspended matter in sea water. J. mar. biol. Ass. U.K., Vol. 29, pp. 139–43.CrossRefGoogle Scholar
Atkins, W. R. G., Jenkins, P. G. & Warren, F. J., 1954. The suspended matter in sea water and its seasonal changes as affecting the visual range of the Secchi disc. J. mar. biol. Ass. U.K., Vol. 33, pp. 497509.CrossRefGoogle Scholar
Bond, R. M., 1933. A contribution to the study of the natural food cycle in aquatic environments. Bull. Bingham oceanogr. Coll., Vol. 4, No. 4, 89 pp.Google Scholar
Buchan, S., Floodgate, G. D. & Crisp, D. J. 1967. Studies on the seasonal variation of the suspended matter in the Menai Straits. I. The inorganic fraction. Limnol. Oceanogr., Vol. 12, pp. 419–31.CrossRefGoogle Scholar
Currie, R. I. & Foxton, P., 1957. A new quantitative plankton net. J. mar. biol. Ass. U.K., Vol. 36, pp. 1732.CrossRefGoogle Scholar
Gavard, X., 1927. De quoi se nourissent les huitres? Leur nourriture envisagée au point de vue ‘Ostreiculture’. Bull. Stn Aquic. Peche Castiglione, T. 1, pp. 237–54.Google Scholar
Gehringer, J. W., 1952. An all metal plankton sampler (model Gulf III). Spec. scient. Rep. U.S. Fish Wildl. Servs. (Fisheries), No. 88, pp. 712.Google Scholar
Jørgensen, C. B., 1962. The food of filter feeding organisms. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer, Vol. 153, pp. 99107.Google Scholar
Jørgensen, C. B., 1966. Biology of Suspension Feeding. Pergamon Press.Google Scholar
Loosanoff, V. L., Miller, W. S. & Smith, P. B. 1951. Growth and settling of larvae of Venus mercenaria in relation to temperature. J. mar. Res., Vol. 10, pp. 5981.Google Scholar
Lovegrove, T., 1962. The effect of various factors on dry weight values. (Abstract). Rapp. P-v. Réun, Cons. perm. int. Explor. Mer, Vol. 153, pp. 8691.Google Scholar
Lovegrove, T., 1966. The determination of the dry weight of plankton and the effect of various factors on the results obtained. In Some Contemporary Studies in Marine Science (ed. Harold, Barnes), pp. 429–67. London: Allen and Unwin.Google Scholar
Menzel, D. W. & Ryther, J. H., 1964. The composition of paniculate organic matter in the western north Atlantic. Limnol. Oceanogr., Vol. II, pp. 333–7.Google Scholar
Nalewajko, C., 1966. Dry weight, ash and volume data for some fresh water planktonic algae. J. Fish Res. Bd Can., Vol. 23, pp. 1285–8.CrossRefGoogle Scholar
Ostapenya, A. P., Sushenya, L. M. & Khemleva, N. N., 1967. Caloricity of tropical ocean plankton. Okeanologia Moscow, Vol. 7, pp. 1100–8.Google Scholar
Parsons, T. R., 1963. Suspended organic matter in sea water. In Progr. Oceanogr. (ed. M., Sears), Vol. I, pp. 205–39.CrossRefGoogle Scholar
Raymont, J. E. G., 1966. The production of marine plankton. Advances in Ecological Research, Vol. 3, pp. 117205.CrossRefGoogle Scholar
Riley, G. A., 1963. Organic aggregations in seawater and the dynamics of their formation and utilization. Limnol. Oceanogr., Vol. 8, pp. 372–81.CrossRefGoogle Scholar
Sheldon, R. W. & Parsons, T. R., 1967. A continuous size spectrum for paniculate matter in the sea. J. Fish Res. Bd Can., Vol. 24(5), pp. 909–15.CrossRefGoogle Scholar
Slobodkin, L. B. & Richman, S., 1961. Calories/gm. in species of animals. Nature, Lond., Vol. 191, p. 299.CrossRefGoogle Scholar
Slobodkin, L. B., 1962. Energy in animal ecology. Advances in Ecological Research, Vol. 3, pp 69101.CrossRefGoogle Scholar
Steele, J. H. & Baird, I. E., 1961. Relations between primary production, chlorophyll and paniculate carbon. Limnol. Oceanogr., Vol. 6, pp. 6878.CrossRefGoogle Scholar
Trevallion, A. N., 1967. An investigation of detritus in Southampton Water. J. mar. biol. Ass. U.K., Vol. 47, pp. 523–32.CrossRefGoogle Scholar
Van Heyningen, H. E., 1954. A study of food of some Daphniidae. Köbenhavns. Univ. Ferskvandsbiol. Lab., Hillerød.Google Scholar