Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T19:03:15.809Z Has data issue: false hasContentIssue false

The adaptations of Lasaea rubra (Montagu), a small intertidal lamellibranch

Published online by Cambridge University Press:  11 May 2009

J. E. Morton
Affiliation:
Department of Zoology, Queen Mary College, London
A. D. Boney
Affiliation:
Department of Chemistry and Biology, Plymouth Technical College
E. D. S. Corner
Affiliation:
From the Plymouth Laboratory

Extract

A study has been made of the ecology of the small intertidal lamellibranch Lasaea rubra at various tidal levels at Plymouth and Wembury. In addition, experiments have been carried out to investigate physiological and behavioural differences arising from varying amounts of submersion at different tidal levels, and the following findings have been made.

During the first hour after their submersion by sea water, L. rubra from high up the shore filter at a rate approximately twice that of animals which live lower down. After 2 h, however, both sets of animals filter at the same rate.

High-level animals respond significantly faster to wetting by splash and can tolerate a considerable range of salinity. They also respire at a rate approximately twice that of low-level animals. Respiration, however, is not detectable when the animal is not immersed in sea water.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, D. C, 1957. The response of the limpet, Patella vulgata L., to waters of different salinities. J. mar. biol. Ass. U.K., Vol. 36, pp. 121–8.CrossRefGoogle Scholar
Ballantine, D. & Morton, J. E., 1956. Filtering, feeding and digestion in the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K., Vol. 35, pp. 241–74.Google Scholar
Chapman, G., 1955. Aspects of the fauna and flora of the Azores. VI. Density of animal life in the Corallina alga zones. Ann. Mag. nat. Hist., Vol. 8, pp. 801–5.Google Scholar
Colman, J. S., 1933. The nature of the intertidal zonation of plants and animals. J. mar. biol. Ass. U.K., Vol. 18, pp. 435–76–Google Scholar
Colman, J. S., 1940. On the faunas inhabiting intertidal sea-weeds. J. mar. biol. Ass. U.K., Vol. 24, pp. 129–83.CrossRefGoogle Scholar
Dixon, M., 1943. Manometric methods. 122 pp. Cambridge University Press.Google Scholar
Fischer, P. H., 1940. Sur l'habitat de Lasaea rubra. Bull. Mus. Hist, nat., Paris, Ser. 1, T. 12, pp. 433–5.Google Scholar
Fischer, P. H., Duval, M. & Raffy, A., 1933. Etudes sur les echanges respiratoires des littorines. Arch. Zool. exp. gen., T. 74, pp. 627–34.Google Scholar
Glynne Williams, J. & Hobart, J., 1952. Studies on the crevice fauna of a selected shore in Anglesey. Proc. zool. Soc. Lond., Vol. 122, pp. 797824.CrossRefGoogle Scholar
Gregg, S. J., 1955. An electromagnetic sorption balance. J. chem. Soc, pp. 1438–9.CrossRefGoogle Scholar
Jørgensen, C. B., 1949. The rate of feeding by Mytilus in different kinds of suspension. J. mar. biol. Ass. U.K., Vol. 28, pp. 333”44.CrossRefGoogle Scholar
Jørgensen, C. B., 1952. Efficiency of growth in Mytilus edulis and two gastropod veligers. Nature, Lond., Vol. 170, p. 714.CrossRefGoogle Scholar
Lysaght, A. M., 1941. The biology and trematode parasites of the gastropod Littorina neritoides (L.) on the Plymouth foreshore. J. mar. biol. Ass. U.K., Vol. 25, pp. 4167.CrossRefGoogle Scholar
Monterosso, B., 1928. Studii cirripedologici III. Persistenza dei fenomeni respiraton nei Ctamalini mantenuti in ambiente subaereo. Boll. Soc. biol. Sper., Vol. 3, pp. 1067–70.Google Scholar
Morton, J. E., 1954. The crevice faunas of the upper intertidal zone at Wembury. J. mar. biol. Ass. U.K., Vol. 33, pp. 187224.CrossRefGoogle Scholar
Morton, J. E., 1956. The tidal rhythm and action of the digestive system in the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K., Vol. 35, pp. 563–86.Google Scholar
Oldfield, E., 1955. Observations on the anatomy and mode of life of Lasaea rubra (Montagu) and Turtonia minuta (Fabricius). Proc. malacol. Soc. Lond., Vol. 31, pp. 226–49.Google Scholar
Orton, J. H., 1920. Temperature, breeding and distribution in marine animals. J. mar. biol. Ass. U.K., Vol. 12, pp. 339–66.CrossRefGoogle Scholar
Patané, L., 1933. Sul comportamento di Littorina neritoides L., mantenuta in ambiente subaereo ed in altre condizione sperimentali. R.C. Accad. Lincei, Ser. 6, Vol. 17, pp. 961–7.Google Scholar
Robbie, W. A., 1946. The quantitative control of cyanide in manometric experimentation. J. cell. comp. Physiol., Vol. 27, pp. 181209.CrossRefGoogle ScholarPubMed
Segal, E., Rao, K. P. & James, T. W., 1953. Rate of activity as a function of intertidal height within populations of some littoral mollusca. Nature, Lond., Vol. 172, p. 1108.CrossRefGoogle Scholar
Southward, A. J., 1955. On the behaviour of barnacles. II. The influence of habitat and tidal level on cirral activity. J. mar. biol. Ass. U.K., Vol. 34, pp. 423–33.CrossRefGoogle Scholar
Southward, A. J. & Crisp, D. J., 1954. The distribution of certain intertidal animals around the Irish coast. Proc. R. Irish Acad., Vol. 57 B, pp. 129.Google Scholar
Whitaker, D. M., 1933. On the rate of oxygen consumption by fertilized and unfertilized eggs. IV. Chaetopterus and Arbacia punctulata. J. gen. Physiol., Vol. 16, pp. 475–95.Google Scholar