Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T21:47:12.591Z Has data issue: false hasContentIssue false

Spatial aggregation patterns of free-living marine nematodes in contrasting sandy beach micro-habitats

Published online by Cambridge University Press:  14 July 2010

Ruth Gingold
Affiliation:
Biological Oceanography Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
Silvia E. Ibarra-Obando
Affiliation:
Marine Ecology Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
Axayácatl Rocha-Olivares*
Affiliation:
Biological Oceanography Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
*
Correspondence should be addressed to: A. Rocha-Olivares, Biological Oceanography Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico email: arocha@cicese.mx

Abstract

In the absence of chemical or physical gradients, random displacement of organisms can result in unpredictable distribution patterns. In spite of a limited locomotive capability, marine nematodes may choose where to settle after re-suspension and may maintain their position in the sediment under calm conditions, leading to small-scale (<1 m) spatial variability. However, in more energetic environments, nematodes become re-suspended with sediments and re-distributed at distances dependent on prevalent hydrodynamic regimes, from metre- to decametre-scale or more. In this study, we tested the hypothesis that micro-habitats (i.e. runnels and sandbars) in a macrotidal sandy beach influence the distribution patterns of free-living marine nematodes by exhibiting contrasting hydrodynamic regimes. Specifically, we predicted patchier distributions in the calmer environment (runnel). We sampled nematodes in each habitat from <1 m to decametre scales. Our results show more heterogeneous spatial distributions in the runnel, presumably owing to a predominance of active displacement under calmer conditions and sediment cohesion by algal films. Biological similarity among runnel replicates was low, whereas replicates from the sandbar exhibited higher similarity, presumably because of homogenization of the sediment and inhabiting fauna by tidal currents. A significant negative correlation between biological similarity and sampling distance was found in the runnel, but not in the sandbar. The most similar samples were the closest in the runnel and the most distant in the sandbar. More patchily distributed taxa were found in the runnel and a larger fraction of homogeneously or randomly distributed taxa in the sandbar. We conclude that different hydrodynamic regimes in contrasting intertidal micro-habitats significantly influenced the nematofaunal distribution, resulting in different spatial patterns next to one another in the same beach. This has significant implications for sampling and monitoring designs and begs the need for detailed studies about the physical and biological processes governing meiobenthic communities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, P.J.M. and Tyler, S. (1980) Hopping locomotion in a nematode—functional anatomy of the caudal gland apparatus of Theristus caudasaliens sp. n. Journal of Morphology 164, 265285.CrossRefGoogle Scholar
Anthony, E.J., Levoy, F., Monfort, O. and Degryse-Kulkarni, C. (2005) Short-term intertidal bar mobility on a ridge-and-runnel beach, Merlimont, northern France. Earth Surface Processes and Landforms 30, 8193.CrossRefGoogle Scholar
Armonies, W. (1994) Drifting meio- and macrobenthic invertebrates on tidal flats in Konigshafen: a review. Helgoländer Meeresuntersuchungen 48, 299320.CrossRefGoogle Scholar
Blanchard, G.F. (1990) Overlapping microscale dispersion patterns of meiofauna and microphytobenthos. Marine Ecology Progress Series 68, 101111.CrossRefGoogle Scholar
Byers, J.A. (2001) Correlated random walk equations of animal dispersal resolved by simulation. Ecology 82, 16801690.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth UK: Plymouth Marine Laboratory, 859 pp.Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6: user manual-tutorial. Plymouth: PRIMER-E, 91 pp.Google Scholar
Clarke, K.R., Chapman, M.G., Somerfield, P.J. and Needham, H.R. (2006) Dispersion-based weighting of species counts in assemblage analyses. Marine Ecology Progress Series 320, 1127.CrossRefGoogle Scholar
Commito, J.A. and Tita, G. (2002) Differential dispersal rates in an intertidal meiofauna assemblage. Journal of Experimental Marine Biology and Ecology 268, 237256.CrossRefGoogle Scholar
Coull, B.C. (1990) Are members of the meiofauna food for higher trophic levels? Transactions of the American Microscopical Society 109, 233246.CrossRefGoogle Scholar
De Jonge, V.N. and Bouwman, L.A. (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox™. Marine Biology 42, 143148.CrossRefGoogle Scholar
Decho, A.W. (1986) Water-cover influences on diatom ingestion rates by meiobenthic copepods. Marine Ecology Progress Series 33, 139146.CrossRefGoogle Scholar
Decraemer, W., Gourbault, N. and Backeljau, T. (1997) Marine nematodes of the family Draconematidae (Nemata): a synthesis with phylogenetic relationships. Hydrobiologia 357, 185202.CrossRefGoogle Scholar
Depatra, K.D. and Levin, L.A. (1989) Evidence of the passive deposition of meiofauna into fiddler crab burrows. Journal of Experimental Marine Biology and Ecology 125, 173192.CrossRefGoogle Scholar
Elliot, J.M. (1971) Some methods for the statistical analysis of samples of benthic invertebrates. The Ferry House Ambleside, Westmorland: Freshwater Biological Association, 144 pp.Google Scholar
Fegley, S.R. (1987) Experimental variation of near-bottom current speeds and its effects on depth distribution of sand-living meiofauna. Marine Biology 95, 183191.CrossRefGoogle Scholar
Findlay, S.E.G. (1981) Small-scale spatial-distribution of meiofauna on a mudflat and sandflat. Estuarine, Coastal and Shelf Science 12, 471484.CrossRefGoogle Scholar
Fleeger, J.W. and Decho, A.W. (1987) Spatial variability of interstitial meiofauna: a review. Stygologia 3, 3554.Google Scholar
Gallucci, F., Moens, T., Vanreusel, A. and Fonseca, G. (2008) Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Marine Ecology Progress Series 367, 173183.CrossRefGoogle Scholar
Gheskiere, T., Hoste, E., Vanaverbeke, J., Vincx, M. and Degraer, S. (2004) Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). Journal of Sea Research 52, 211226.CrossRefGoogle Scholar
Gheskiere, T., Vincx, M., Urban-Malinga, B., Rossano, C., Scapini, F. and Degraer, S. (2005) Nematodes from wave-dominated sandy beaches: diversity, zonation patterns and testing of the isocommunities concept. Estuarine, Coastal and Shelf Science 62, 365375.CrossRefGoogle Scholar
Gingold, R., Mundo-Ocampo, M., Holovachov, O. and Rocha-Olivares, A. (2010) The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Marine Biology 157, (doi:10.1007/s00227-00010-01447-z).CrossRefGoogle ScholarPubMed
Green, R.H. (1966) Measurement of non-randomness in spatial distributions. Researches on Population Ecology 8, 17.CrossRefGoogle Scholar
Hines, A.H., Long, W.C., Terwin, J.R. and Thrush, S.F. (2009) Facilitation, interference, and scale: the spatial distribution of prey patches affects predation rates in an estuarine benthic community. Marine Ecology Progress Series 385, 127135.CrossRefGoogle Scholar
Hogue, E.W. (1982) Sediment disturbance and the spatial distributions of shallow water meiobenthic nematodes on the open Oregon coast. Journal of Marine Research 40, 551573.Google Scholar
Hurlbert, S.H. (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577586.CrossRefGoogle ScholarPubMed
Jensen, P. (1981) Phyto-chemical sensitivity and swimming behavior of the free-living marine nematode Chromadorita tenuis. Marine Ecology Progress Series 4, 203206.CrossRefGoogle Scholar
King, C.A.M. (1972) Beaches and coasts. London: Edward Arnold, 570 pp.Google Scholar
Lluch-Cota, S.E., Aragon-Noriega, E.A., Arreguin-Sanchez, F., Aurioles-Gamboa, D., Bautista-Romero, J.J., Brusca, R.C., Cervantes-Duarte, R., Cortes-Altamirano, R., Del-Monte-Luna, P., Esquivel-Herrera, A., Fernandez, G., Hendrickx, M.E., Hernandez-Vazquez, S., Herrera-Cervantes, H., Kahru, M., Lavin, M., Lluch-Belda, D., Lluch-Cota, D.B., Lopez-Martinez, J., Marinone, S.G., Nevarez-Martinez, M.O., Ortega-Garcia, S., Palacios-Castro, E., Pares-Sierra, A., Ponce-Diaz, G., Ramirez-Rodriguez, M., Salinas-Zavala, C.A., Schwartzlose, R.A. and Sierra-Beltran, A.P. (2007) The Gulf of California: review of ecosystem status and sustainability challenges. Progress in Oceanography 73, 126.CrossRefGoogle Scholar
Luc, M. and De Coninck, L.A. (1959) Nématodes libres de la région de Roscoff. Archives de Zoologie Experimentale et Générale 98, 103165.Google Scholar
Masselink, G. and Short, A.D. (1993) The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of Coastal Research 9, 785800.Google Scholar
Moens, T. and Vincx, M. (1997) Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211227.CrossRefGoogle Scholar
Moens, T., Van Gansbeke, D. and Vincx, M. (1999) Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). Journal of the Marine Biological Association of the United Kingdom 79, 10171027.CrossRefGoogle Scholar
Moens, T., Bouillon, S. and Gallucci, F. (2005) Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 85, 14011407.CrossRefGoogle Scholar
Moody, A.L., Houston, A.I. and McNamara, J.M. (1996) Ideal free distributions under predation risk. Behavioral Ecology and Sociobiology 38, 131143.CrossRefGoogle Scholar
Moreno, M., Ferrero, T.J., Granelli, V., Marin, V., Albertelli, G. and Fabiano, M. (2006) Across shore variability and trophodynamic features of meiofauna in a microtidal beach of the NW Mediterranean. Estuarine, Coastal and Shelf Science 66, 357367.CrossRefGoogle Scholar
Mundo-Ocampo, M., Lambshead, P.J.D., Debenham, N., King, I.W., De Ley, P., Baldwin, J.G., De Ley, I.T., Rocha-Olivares, A., Waumann, D., Thomas, W.K., Packer, M. and Boucher, G. (2007) Biodiversity of littoral nematodes from two sites in the Gulf of California. Hydrobiologia 586, 179189.CrossRefGoogle Scholar
Nehring, S., Jensen, P. and Lorenzen, S. (1990) Tube-dwelling nematodes: tube construction and possible ecological effects on sediment–water interfaces. Marine Ecology Progress Series 64, 123128.CrossRefGoogle Scholar
Nicholas, W.L. and Hodda, M. (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394, 113127.CrossRefGoogle Scholar
Ott, J.A. (1977) New free-living marine nematodes from the West Atlantic I. Four new species from Bermuda with a discussion of the genera Cytolaimium and Rhabdocoma Cobb 1920. Zoologischer Anzeiger 198, 120138.Google Scholar
Palmer, M.A. (1988) Dispersal of marine meiofauna—a review and conceptual-model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series 48, 8191.CrossRefGoogle Scholar
Paterson, D.M. (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnology and Oceanography 34, 223234.CrossRefGoogle Scholar
Phillips, F.E. and Fleeger, J.W. (1985) Meiofauna meso-scale variability in two estuarine habitats. Estuarine, Coastal and Shelf Science 21, 745756.CrossRefGoogle Scholar
Platt, H.M. and Warwick, R.M. (1983) Free-living marine nematodes: Part I. British Enoplids. Cambridge: Cambridge University Press, 307 pp.Google Scholar
Platt, H.M. and Warwick, R.M. (1988) Free-living marine nematodes: Part II. British Chromadorida. Leiden: Brill, 502 pp.CrossRefGoogle Scholar
Raes, M., Vanreusel, A. and Decraemer, W. (2003) Epsilonematidae (Nematoda) from a cold-water coral environment in the Porcupine Seabight, with a discussion on the status of the genus Metaglochinema Gourbault & Decraemer, 1986. Hydrobiologia 505, 4972.CrossRefGoogle Scholar
Raes, M., Decraemer, W. and Vanreusel, A. (2006) Postembryonic morphology in Epsilonematidae, with a discussion on the variability of caudal gland outlets. Journal of Nematology 38, 97118.Google ScholarPubMed
Sandulli, R. and Pinckney, J.L. (1999) Patch sizes and spatial patterns of meiobenthic copepods and benthic microalgae in sandy sediments: a microscale approach. Journal of Sea Research 41, 179187.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J. (1995) Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman and Company, 887 pp.Google Scholar
Somerfield, P.J., Dashfield, S.L. and Warwick, R.M. (2007) Three-dimensional spatial structure: nematodes in a sandy tidal flat. Marine Ecology Progress Series 336, 177186.CrossRefGoogle Scholar
Statsoft (1993) STATISTICA for the Windows Operating System Release 4.5. Tulsa OK, USA: Statsoft Inc. (www.statsoft.com).Google Scholar
Sun, B. and Fleeger, J.W. (1994) Field experiments on the colonization of meiofauna into sediment depressions. Marine Ecology Progress Series 110, 167175.CrossRefGoogle Scholar
Sutherland, T.F., Grant, J. and Amos, C.L. (1998) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnology and Oceanography 43, 6572.CrossRefGoogle Scholar
Turpeenniemi, T.A. and Hyvarinen, H. (1996) Structure and role of the renette cell and caudal glands in the nematode Sphaerolaimus gracilis (Monhysterida). Journal of Nematology 28, 318327.Google Scholar
Ullberg, J. and Olafsson, E. (2003) Free-living marine nematodes actively choose habitat when descending from the water column. Marine Ecology Progress Series 260, 141149.CrossRefGoogle Scholar
Warwick, R.M. and Gee, J.M. (1984) Community structure of estuarine meiobenthos. Marine Ecology Progress Series 18, 97111.CrossRefGoogle Scholar
Warwick, R.M., Platt, H.M. and Somerfield, P.J. (1998) Free-living marine nematodes Part III: Monhysterids. Shrewsbury: Field Studies Council.Google Scholar
Wieser, W. (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoologi 4, 439484.Google Scholar