Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T09:32:41.512Z Has data issue: false hasContentIssue false

Otolith shape can be used as a tool to infer population connectivity among individuals of Larimus breviceps at Southwestern Atlantic

Published online by Cambridge University Press:  13 May 2024

Barbara Maichak de Carvalho*
Affiliation:
Programa de Pós-Graduação de Sistema Costeiro e Oceânicos, Universidade Federal do Paraná (UFPR), Pontal do Sul, Pontal do Paraná, Paraná, Brazil
Yasmin Barbieri
Affiliation:
Centro de Estudos do Mar, Universidade Federal do Paraná, Campus Pontal do Paraná, Av. Beira-mar s/n, Pontal do Paraná, Paraná, Brazil
Beatriz Andrade Syrio
Affiliation:
Centro de Ciências Agrárias Aplicadas (CCAA), Departamento de Engenharia de Pesca e Aquicultura (DEPAQ), Laboratório de Ecologia Pesqueira (LEP), Universidade Federal de Sergipe (UFS), São Cristóvão, Sergipe, Brazil
Kátia Meirelles Felizola Freire
Affiliation:
Centro de Ciências Agrárias Aplicadas (CCAA), Departamento de Engenharia de Pesca e Aquicultura (DEPAQ), Laboratório de Ecologia Pesqueira (LEP), Universidade Federal de Sergipe (UFS), São Cristóvão, Sergipe, Brazil
Acácio Ribeiro Gomes Tomás
Affiliation:
Laboratório de Estudos Estuarinos, Centro do Pescado Marinho, Instituto de Pesca, APTA-SAA, Santos, SP, Brazil
*
Corresponding author: Barbara Maichak de Carvalho; Email: bmaicarvalho@gmail.com

Abstract

Otoliths are an excellent tool for analysing the pattern of habitat use between adults and juveniles and connectivity between fish populations. Larimus breviceps is a species belonging to the family Sciaenidae, which has an important role in the marine food chain, as it is one of the most abundant and frequent species in the bycatch of coastal shrimp fisheries in Brazil. The present study aimed at comparing the otolith shape of specimens collected in three different Brazilian coastal areas: Sergipe (SE), northeastern region; São Paulo (SP), southeastern region; and Paraná (PR), southern region. In a laboratory, 88 otoliths were extracted, photographed, and the contour was analysed by the wavelet method (32 from SE, 28 from SP, and 28 from PR). The otolith contours varied between sampling sites. Linear discriminant analysis correctly reclassified 60.23% otoliths by the sampled sites, with the best reclassifications occurring in SE (62.5%), followed by PR (60.71%) and SP (57.14%). Multivariate analysis of variance also evidenced significant differences in contours among the sampling sites (F = 2.3; P < 0.005). Thus, two morphotypes of otoliths were found for L. breviceps: one from Sergipe (northeastern Brazil) and the second one from southeastern–southern Brazil, indicating connectivity between the populations off São Paulo and Paraná, to be confirmed by future genetic studies.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albuquerque, CQ, Miekeley, N, Muelbert, JH, Walther and, BD and Jaureguizar, AJ (2012) Estuarine dependency in a marine fish evaluated with otolith chemistry. Marine Biology 159, 22292239.CrossRefGoogle Scholar
Araújo, CC and Gasalla, MA (2022) Influence of ocean dynamics on the route of argonauts in the southeastern Brazil Bight. Progress in Oceanography 209, 102906.CrossRefGoogle Scholar
Avigliano, E, Leisen, M, Romero, R, Carvalho, B, Velasco, G, Vianna, M, Barra, F and Volpedo, AV (2017) Fluvio-marine travelers from South America: cyclic amphidromy and freshwater residency, typical behaviors in Genidens barbus inferred by otolith chemistry. Fisheries Research 193, 184194.CrossRefGoogle Scholar
Barreto, T, Freire, K, Reis, J Jr, da Rosa, L, Carvalho Filho, A and Rotundo, M (2018) Fish species caught by shrimp trawlers off the coast of Sergipe, in north-eastern Brazil, and their length-weight relations. Acta Ichthyol Piscat 48, 277283.CrossRefGoogle Scholar
Beneditto, CCVB (2017) On the feeding habit of the Guiana dolphin Sotalia guianensis (Van Bénedèn, 1864) (Mammalia: Cetartiodactyla: Delphinidae) in southeastern Brazil (22°S): has there been any change in more than two decades? Journal of Threatened Taxa 9, 98409843.CrossRefGoogle Scholar
Bessa, E, Santos, FB, Pombo, M, Denadai, M, Fonseca, M and Turra, A (2014) Population ecology, life history and diet of the shorthead drum Larimus breviceps in a tropical bight in southeastern Brazil. Journal of the Marine Biological Association of the United Kingdom 94, 615622.CrossRefGoogle Scholar
Bot, RLN, Carvalho, BM, Schwarz-Júnior, R and Spach, HL (2020) Ontogenetic variation in the sagitta otolith of Centropomus undecimalis (Actinopterygii: Perciformes: Centropomidae) in a tropical estuary. Acta Ichthyologica et Piscatoria 50, 433443.Google Scholar
Cadrin, SX and Friedland, KD (1999) The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research 43, 129139.CrossRefGoogle Scholar
Campana, SE (1999) Chemistry and composition of fish otolith: pathways, mechanisms and application. Marine Ecology Progress Series 188, 263297.CrossRefGoogle Scholar
Cardoso, LG and Haimovici, M (2011) Age and changes in growth of the king weakfish Macrodon atricauda (Günther, 1880) between 1977 and 2009 in southern Brazil. Fisheries Research 111, 177187.CrossRefGoogle Scholar
Carvalho, BM, Vaz-dos-Santos, AM, Spach, HL and Volpedo, AV (2015) Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Scientia Marina 79, 409418.CrossRefGoogle Scholar
Carvalho, BM, Volpedo, AV and Fávaro, LF (2020) Ontogenetic and sexual variation in the sagitta otolith of Menticirrhus americanus (Teleostei; Sciaenidae) (Linnaeus, 1758) in a subtropical environment. Papéis Avulsos de Zoologia 60, e20206009.CrossRefGoogle Scholar
Carvalho, BM, Martinez-Pérez, JA, Aguilar-Perera, A, Quiñones, VN, Tomás, ARG, Vitule, J and Volpedo, AV (2022) Inferring connectivity between populations of Opsanus beta (Goode & Bean, 1880) from the Southern Gulf of Mexico and South-western Atlantic coast. Journal of the Marine Biological Association of the United Kingdom 102, 597603.CrossRefGoogle Scholar
Castro Filho, BM and Miranda, LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S – coastal segment (4°W). The Sea 11, 209251.Google Scholar
Cattani, AP, Santos, LO, Spach, HL, Budel, BR and Gondim-Guanais, JHD (2011) Avaliação da ictiofauna da fauna acompanhante da pesca do camarão sete-barbas do município de Pontal do Paraná, litoral do Paraná, Brasil. Boletim do Instituto de Pesca 37, 247260.Google Scholar
Chao, LN (1978) A Basis for Classifying Western Atlantic Sciaenidae (Teleostei: Perciformes). NOAA Technical Report NMFS Circular.Google Scholar
Chao, NL, Frédou, FL, Haimovici, M, Peres, MB, Polidoro, B, Raseira, M, Subirá, R and Carpenter, K (2015) A popular and potentially sustainable fishery resource under pressure – extinction risk and conservation of Brazilian Sciaenidae (Teleostei: Perciformes). Global Ecology and Conservation 45, 110.Google Scholar
Childs, AR, Cowley, PD, Næsje, TF and Bennett, RH (2015) Habitat connectivity and intra-population structure of an estuary-dependent fishery species. Marine Ecology Progress Series 537, 233245.CrossRefGoogle Scholar
Ekau, W and Knoppers, BA (1999) An introduction to the pelagic system of the North-East and East Brazilian shelf. Archive of Fishery and Marine Research 47, 113132.Google Scholar
Ferguson, GJ, Ward, TM and Gillanders, BM (2011) Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research 110, 7583.CrossRefGoogle Scholar
Froese, R and Pauly, D (2023) FishBase. World Wide Web electronic publication. Available at www.fishbase.org, version 02/2023.Google Scholar
Gauldie, RW and Crampton, JS (2002) An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology 60, 12041221.Google Scholar
Hammer, O, Harper, DAT and Ryan, PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Heileman, S (2009) XVI-53 East Brazil Shelf: LME #16. pp. 711–721. In: K. Sherman and G. Hempel (eds), The UNEP Large Marine Ecosystems Report: a perspective on changing conditions in LMEs of the world's regional seas. Nairobi, UNEP Regional Seas Report and Studies No. 182.Google Scholar
Holmberg, RJ, Wilcox-Freeburg, E, Rhyne, AL, Tlusty, MF, Stebbins, A, Nye, SW Jr, Honig, A, Johnston, AE, San Antonio, CM, Bourque, B and Hannigan, RE (2018) Ocean acidification alters morphology of all otolith types in Clark's anemonefish (Amphiprion clarkii). PeerJ 7, 124.Google Scholar
Ibañez, AL, Hernández-Fraga, K and Alvarez-Hernández, S (2017) Discrimination analysis of phenotypic stocks comparing fish otolith and scale shapes. Fisheries Research 185, 613.CrossRefGoogle Scholar
Ibañez, AL, Rangely, J, Avila-Herrera, L, Silva, VEL, Almanzar, EP, Neves, JMM, Avigliano, E, Callicó, R, Volpedo, AA and Fabré, NN (2022) Unraveling the Mugil curema complex of American coasts integrating genetic variations and otolith shapes. Estuarine. Coastal and Shelf 273, 110. https://doi.org/10.1016/j.ecss.2022.107914Google Scholar
Kikuchi, E, Cardoso, LG, Canel, D, Timi, JT and Haimovici, M (2021) Using growth rates and otolith shape to identify the population structure of Umbrina canosai (Sciaenidae) from the Southwestern Atlantic. Marine Biology Research 17, 272285.CrossRefGoogle Scholar
Lessa, GC, Santos, FM, Souza Filho, CPW and Corrêa-Gomes, LC (2018). Brazilian estuaries: a geomorphologic and oceanographic perspective. In Lana, PC and Bernardino, AF (eds), Brazilian Estuaries: A Benthic Perspective. Berlin: Springer, pp. 137. https://doi.org/10.1007/978-3-319-77779-5_1Google Scholar
Mahiques, MM, Sousa, SHM, Furtado, VV, Tessler, MG, Toledo, FAL, Burone, L, Figueira, RCL, Klein, DA, Martins, CC and Alves, DPV (2010) The Southern Brazilian shelf: general characteristics, quaternary evolution and sediment distribution. Brazilian Journal of Oceanography 58, 2534.CrossRefGoogle Scholar
Mai, ACG, Condini, MV, Albuquerque, CQ, Loebmann, D, Saint'Pierre, TD, Miekeley, N and Vieira, JP (2014) High plasticity in habitat use of Lycengraulis grossidens (Clupeiformes, Engraulididae). Estuarine, Coastal and Shelf Science 141, 1725.CrossRefGoogle Scholar
Mallat, S (1991) Zero crossings of a wavelet transform. IEEE Transaction on Information Theory 37, 10191033.CrossRefGoogle Scholar
Miotto, M, Carvalho, BM and Spach, HL (2017) Does the closed fishing season influence the ichthyofauna consumed by Larus dominicanus? Brazilian Journal of Oceanography 65, 918.CrossRefGoogle Scholar
Morat, F, Marschal, C, Dominici, JM and Harmelin-Vivien, M (2017) A 31-year-old brown meagre female poached in the Scandola Marine Reserve in Corsica, France. Cybium 41, 7980.Google Scholar
Odell, J, Adams, DH, Boutin, B, Collier, IIW, Deary, A, Havel, LN, Johnson, JA, Midway, SR, Murray, J, Smith, K, Wilke, KM and Yuen, MW (2017) Atlantic Sciaenid Habitats: A Review of Utilization, Threats, and Recommendations for Conservation, Management, and Research. Atlantic States Marine Fisheries Commission Habitat Management Series No. 14, Arlington, VA.Google Scholar
Oliveira, JC, Aguiar, W, Cirano, M, Genz, F and Amorim, FN (2018) A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environmental Earth Sciences 77, 117.Google Scholar
Oliveira, MA, Di Beneditto, APM and Monteiro, LR (2009) Variação geográfica na forma e nas relações alométricas dos otólitos sagitta da maria-luíza Paralonchurus brasiliensis (Steindachner, 1875) (Teleostei, Sciaenidae) no litoral norte do Rio de Janeiro (21°S–23°S), Brasil. Boletim do Instituto de Pesca 35, 475485.Google Scholar
Parisi-Baradad, V, Manjabacas, A, Lombarte, A, Olivella, R, Chic, Ò, Piera, J and García-Ladona, E (2010) Automatic taxon identification of teleost fishes in an otolith online database. Fisheries Research 105, 1320.CrossRefGoogle Scholar
Passarone, R, Aparecido, KC, Eduardo, LN, Lira, AS, Silva, LVS, Justino, AKS, Silva, CC and Frédou, FL (2019) Ecological and conservation aspects of bycatch fishes: an evaluation of shrimp fisheries impacts in northeastern Brazil. Brazilian Journal of Oceanography 67, 110.CrossRefGoogle Scholar
Popper, AN and Fay, RR (2011) Rethinking sound detection by fishes. Hearing Research 273, 2536.CrossRefGoogle ScholarPubMed
Porcaro, RR, Zani-Teixeira, ML, Katsuragawa, M, Namiki, C, Ohkawara, MH and Favero, JM (2014) Spatial and temporal distribution patterns of larval sciaenids in the estuarine system and adjacent continental shelf off Santos, southeastern Brazil. Brazilian Journal of Oceanography 62, 149164.CrossRefGoogle Scholar
Rossi-Wongtschowski, CLDB and Madureira, LSP (2006) O ambiente oceanográfico da plataforma continental e do talude na região Sudeste-Sul do Brasil, 1st Edn. São Paulo: EDUSP.Google Scholar
Sadighzadeh, Z, Valinassa, T, Vosugi, G, Motallebi, AA, Fatemi, MR, Lombarte, A and Tuset, VM (2014) Use of otolith shape for stock identification of John's 74 snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research 155, 5963.CrossRefGoogle Scholar
Santos, RS, Azevedo, MCC, Albuquerque, CQ and Araújo, FG (2017) Different sagitta otolith morphotypes for the whitemouth croaker Micropogonias furnieri in the Southwestern Atlantic coast. Fisheries Research 195, 222229.CrossRefGoogle Scholar
Santos, LV, Vasconcelos-Filho, JE, Lira, AS, Soares, A, Eduardo, LN, Passarone, R, Le-Loc'h, F and Lucena-Frédou, F (2021a) Trophic ecology and ecomorphology of the shorthead drum, Larimus breviceps (Acanthuriformes: Sciaenidae), from the northeastern Brazil. Thalassas: An International Journal of Marine Sciences 38, 111.CrossRefGoogle Scholar
Santos, LV, Vasconcelos-Filho, JE, Lira, AS, Soares, A, Eduardo, LN, Passarone, R, Le-Loc'h, F and Lucena-Frédou, F (2021b) Reproductive biology of the shorthead drum Larimus breviceps (Acanthuriformes: Sciaenidae) in northeastern Brazil. Regional Studies in Marine Science 48, 18.CrossRefGoogle Scholar
Schulz-Mirbach, T, Ladich, F, Plath, M and Heb, M (2019) Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biological Reviews 94, 457482.CrossRefGoogle ScholarPubMed
Siliprandi, CC, Rossi-Wongtschowski, CLDB, Brenha, MR, Gonsales, SA, Santificetur, C and Vaz-dos-Santos, AM (2014) Atlas of marine bony fish otoliths (sagittae) of southeastern – southern Brazil. Part II: perciformes (Carangidae, Sciaenidae, Scombridae and Serranidae). Brazilian Journal of Oceanography 62, 28101.Google Scholar
Silva, CAB Jr, Viana, AP, Fredou, FL and Fredou, T (2015) Aspects of the reproductive biology and characterization of Sciaenidae captured as bycatch in the prawn trawling in the northeastern Brazil. Acta Scientiarum Biological Science 37, 18.CrossRefGoogle Scholar
Silveira, ICA, Schmidt, ACK, Campos, EJD, Godoi, SS and Ikeda, Y (2000) A corrente do Brasil ao largo da costa leste brasileira. Revista Brasileira de Oceanografia 48, 171183.CrossRefGoogle Scholar
Soeth, M, Spach, HL, Daros, FA, Adelir-Alves, J, Almeida, ACO and Correia, AT (2019) Stock structure of Atlantic spadefish Chaetodipterus faber from Southwest Atlantic Ocean inferred from otolith elemental and shape signatures. Fisheries Research 211, 8190.CrossRefGoogle Scholar
Spalding, MD, Fox, HE, Allen, GR, Davidson, N, Ferdaña, ZA, Finlayson, M, Halpern, BS, Jorge, MA, Lombana, A, Lourie, SA, Martin, KD, McManus, E, Molnar, J, Recchia, CA and Robertson, J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573584.CrossRefGoogle Scholar
Stransky, C and Maclellan, SE (2005) Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Canadian Journal of Fisheries and Aquatic Science 62, 22652276.CrossRefGoogle Scholar
Tuset, VM, Imondi, R, Aguado, G, Otero-Ferrer, JL, Santschi, L, Lombarte, A and Love, M (2015) Otolith patterns of rockfishes from the northeastern Pacific. Journal of Morphology 276, 458469.CrossRefGoogle ScholarPubMed
Tuset, VM, Jurado-Ruzafa, A, Otero-Ferrer, JL and Santamaría, MTG (2019) Otolith phenotypic variability of the blue jack mackerel, Trachurus picturatus, from the Canary Islands (NE Atlantic): Implications in its population dynamic. Fisheries Research 218, 4858.CrossRefGoogle Scholar
Tuset, VM, Lombarte, A and Assis, CA (2008) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72, 7198.CrossRefGoogle Scholar
Vasconcelos, J, Vieira, AR, Sequeira, V, González, JA, Kaufmann, M and Gordo, LS (2018) Identifying populations of the blue jack mackerel (Trachurus picturatus) in the Northeast Atlantic by using geometric morphometrics and otolith shape analysis. Fisheries Bulletin 116, 8192.CrossRefGoogle Scholar
Vazzoler, AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: Editora da Universidade Estadual de Maringá.Google Scholar
Verocai, JE, Lombarte, A and Norbis, W (2023) Ontogenetic changes in sagitta otoliths of whitemouth croaker Micropogonias furnieri (Acanthuriformes: Sciaenidae) and its implication in acoustic communication. Animal Biology 73, 195211.CrossRefGoogle Scholar
Vianna, M and Almeida, T (2005) Bony fish bycatch in the southern Brazil pink shrimp (Farfantepenaeus brasiliensis and F. paulensis) fishery. Brazilian Archives of Biology and Technology 48, 611623.CrossRefGoogle Scholar
Volpedo, AV and Echeverría, DD (1999) Morfología de los otolitos sagittae de juveniles y adultos de Micropogonias furnieri (Desmarest, 1823) (Sciaenidae). Revista Ciencias Marina Thalassas 15, 1924.Google Scholar
Waessle, JA, Lasta, CA and Favero, M (2003) Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35–36°S). Scientia Marina 67, 233240.CrossRefGoogle Scholar
Waggy, GL, Brown-Peterson, NJ and Peterson, MS (2006) Evaluation of the Reproductive Life History of the Sciaenidae in the Gulf of Mexico and Caribbean Sea: ‘Greater’ versus ‘Lesser’ Strategies? 57th Gulf and Caribbean Fisheries Institute, 264282.Google Scholar
Xiong, Y, Yang, J, Zhang, ZH, Liu, HB, Jiang, T and Chen, TT (2015) Factors affecting morphological development of the sagittal otolith in juvenile and adult small yellow croaker (Larimichthys polyactis Bleeker, 1877). Journal of Applied Ichthyology 31, 10231028.CrossRefGoogle Scholar