Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T00:16:12.167Z Has data issue: false hasContentIssue false

Histochemistry of the Bucco-Oesophageal Glands of Mytilus Edulis: The Importance of Mucus in Ingestion

Published online by Cambridge University Press:  11 May 2009

Peter G. Beninger
Département de Biologie et Centre de Recherches sur l'Environnement, Faculté des Sciences, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada. URA CNRS 1513 ‘Bioflux’, Laboratoire de Biologie Marine, Institut d'Etudes Marines, Université de Bretagne Occidentale, 29287 Brest Cedex, France
Marcel Le Pennec
URA CNRS 1513 ‘Bioflux’, Laboratoire de Biologie Marine, Institut d'Etudes Marines, Université de Bretagne Occidentale, 29287 Brest Cedex, France


Histochemical techniques were used to investigate the possible role of the buccooesophageal glands in the blue mussel, Mytilus edulis L. (Mollusca: Bivalvia). No activity was observed for any of the eight major digestive enzymes tested; however, the glands contained large amounts of both neutral and acid mucopolysaccharides. These results confirm the importance of mucus in the ingestive process in M. edulis, and do not support the hypothesis of ingestion of particles suspended in water alone.

Until recently it was thought that the Bivalvia were the only class of molluscs in which some type of secretory gland of extracellular digestive function in the bucco-oesophageal region was totally absent (Table 1). However, in a study of the mode of particle ingestion in five species of suspension-feeding bivalves, an extensive glandular complex was reported in the bucco-oesophageal region of Mytilus edulis L. only (Beninger et al., 1991). Although these glands were observed to liberate secretions into the oesophageal lumen, it was not known whether they performed any digestive function.

Short Communications
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Baba, K., 1940. The mechanisms of absorption and excretion in a Solenogastre, Epimenia verrucosa (Nierstrasz), studied by means of injection methods. Journal of the Department of Agriculture, Kyusyu Imperial University, 6, 119166.Google Scholar
Beninger, P. G., Le Pennec, M. & Donval, A., 1991. Mode of particle ingestion in five species of suspension-feeding bivalve molluscs. Marine Biology, 108, 255261.CrossRefGoogle Scholar
Beninger, P. G., Ward, J. E., Macdonald, B. A. & Thompson, R. J., 1992. Feeding processes of the gill in Placopecten magellanicus (Gmelin) (Mollusca: Bivalvia) as revealed using video endoscopy. Marine Biology, 112, in press.Google Scholar
Brock, V., Kennedy, V. S. & Brock, A., 1986. Temperature dependency of carbohydrase activity in the hepatopancreas of thirteen estuarine and coastal bivalve species from the North American east coast. Journal of Experimental Marine Biology and Ecology, 103, 87101.CrossRefGoogle Scholar
Burstone, M. S. & Folk, J. E., 1956. Histochemical demonstration of aminopeptidase. Journal of Histochemistry and Cytochemistry, 4, 217226.CrossRefGoogle ScholarPubMed
Fretter, V., 1937. The structure and function of the alimentary canal of some species of Polyplacophora (Mollusca). Transactions of the Royal Society of Edinburgh, 59, part I, (no. 4), 119164.CrossRefGoogle Scholar
Fretter, V. & Graham, A., 1962. British prosobranch molluscs: their functional anatomy and ecology. London: Ray Society.Google Scholar
Fuchs, E., 1973. Organo- und histogenese des darmsystems, embryonale blutbildung und dotterabbau bei Eledone cirrosa Lam. (Cephalopoda, Octopoda). Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere, 91, 3192.Google Scholar
George, W. C., 1952. The digestion and absorption of fat in lamellibranchs. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 102, 118127.CrossRefGoogle Scholar
Jørgensen, C. B., 1981. Feeding and cleaning mechanisms in the suspension feeding bivalve Mytilus edulis. Marine Biology, 65, 159163.CrossRefGoogle Scholar
Jørgensen, C. B., 1990. Bivalve filter-feeding: hydrodynamics, bioenergetics, physiology and ecology. Fredensborg, Denmark: Olsen and Olsen Press.Google Scholar
Jørgensen, C. B., Kiørboe, T., Møhlenberg, F. & Riisgard, H. U., 1984. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Marine Ecology Progress Series, 15, 283292.CrossRefGoogle Scholar
Kiørboe, T. & Møhlenberg, F., 1981. Particle selection in suspension-feeding bivalves. Marine Ecology Progress Series, 5, 291296.CrossRefGoogle Scholar
Le Pennec, M., Beninger, P. G., Dorange, G. & Paulet, Y. -M., 1991. Trophic sources and pathways to the developing gametes of Pecten maximus (Bivalvia: Pectinidae). Journal of the Marine Biological Association of the United Kingdom, 71, 451463.CrossRefGoogle Scholar
Mathers, N. F., 1973. A comparative histochemical survey of enzymes associated with the processes of digestion in Ostrea edulis and Crassostrea angulata (Mollusca: Bivalvia). Journal of Zoology, 169, 169179.CrossRefGoogle Scholar
Morton, J. E., 1979. Molluscs, 5th ed., pp. 114120. London: Hutchinson.Google Scholar
Pearse, A. G. E., 1972. Histochemistry: theoretical and applied, 3rd ed., vol. 2. London: Churchill Livingstone.Google Scholar
Purchon, R. D., 1977. The biology of the Mollusca, 2nd ed.Oxford: Pergammon Press.Google Scholar
Reid, R. G. B., 1966. Digestive tract enzymes in the bivalves Lima Mans Gmelin and Mya arenaria L. Comparative Biochemistry and Physiology, 17, 417433.CrossRefGoogle Scholar
Rutenburg, A. M., Goldbarg, J. A., Rutenburg, S. H. & Lang, R. T., 1960. The histochemical demonstration of α-D-glucosidase in mammalian tissues. Journal of Histochemistry and Cytochemistry, 8, 268272.CrossRefGoogle ScholarPubMed
Salvini-Plawen, L. V., 1978. Antarktische und subantarktische Solenogastres (eine Monographie: 1898–1974). Zoologica (Stuttgart), 44(128), 1305.Google Scholar
Salvini-Plawen, L. V., 1981. The molluscan digestive system in evolution. Malacologia, 21, 371401.Google Scholar
Salvini-Plawen, L. V., 1988. The structure and function of molluscan digestive systems. In The Mollusca, vol. 11. Form and function (ed. Trueman, E. R. and Clarke, M. R.), pp. 301379. San Diego: Academic Press.Google Scholar
Scheltema, A. H., 1981. Comparative morphology of the radulae and alimentary tracts in the Aplacophora. Malacologia, 20, 361383.Google Scholar
Vacca, L. L., 1985. Laboratory manual of histochemistry. New York: Raven Press.Google Scholar
Ward, J. E., Beninger, P. G., Macdonald, B. A. & Thompson, R. J., 1991. Direct observations of feeding structures and mechanisms in bivalve molluscs using endoscopic examination and video image analysis. Marine Biology, 111, 287291.CrossRefGoogle Scholar
Ward, J. E., Macdonald, B. A., Thompson, R. J. & Beninger, P. G., in press. Mechanisms of suspension-feeding in bivalves: resolution of current controversies using endoscopy. Limnology and Oceanography.Google Scholar
Wojtowicz, M. B., 1972. Carbohydrases of the digestive gland and the crystalline style of the Atlantic deep-sea scallop (Placopecten magellanicus, Gmelin). Comparative Biochemistry and Physiology, 43A, 131141.CrossRefGoogle Scholar
Zacks, S. I., 1955. The cytochemistry of the amoebocytes and intestinal epithelium of Venus mercenaria (Lamellibranchiata), with remarks on a pigment resembling ceroid. Quarterly Journal of Microscopical Science, 96, 5771.Google Scholar