Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T17:21:45.071Z Has data issue: false hasContentIssue false

Longitudinal Associations Between Contact Frequency with Friends and with Family, Activity Engagement, and Cognitive Functioning

Published online by Cambridge University Press:  23 March 2020

Neika Sharifian*
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, MI, USA
A. Zarina Kraal
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, MI, USA
Afsara B. Zaheed
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, MI, USA
Ketlyne Sol
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, MI, USA
Laura B. Zahodne
Affiliation:
Department of Psychology, University of Michigan, Ann Arbor, MI, USA
*
*Correspondence and reprint requests to: Neika Sharifian, Department of Psychology, University of Michigan, Ann Arbor, MI48109, USA. E-mail: nsharifi@umich.edu

Abstract

Objectives:

Social engagement may be an important protective resource for cognitive aging. Some evidence suggests that time spent with friends may be more beneficial for cognition than time spent with family. Because maintaining friendships has been demonstrated to require more active maintenance and engagement in shared activities, activity engagement may be one underlying pathway that explains the distinct associations between contact frequency with friends versus family and cognition.

Methods:

Using two waves of data from the national survey of Midlife in the United States (n = 3707, Mage = 55.80, 51% female at baseline), we examined longitudinal associations between contact frequency with friends and family, activity engagement (cognitive and physical activities), and cognition (episodic memory and executive functioning) to determine whether activity engagement mediates the relationship between contact frequency and cognition.

Results:

The longitudinal mediation model revealed that more frequent contact with friends, but not family, was associated with greater concurrent engagement in physical and cognitive activities, which were both associated with better episodic memory and executive functioning.

Conclusion:

These findings suggest that time spent with friends may promote both cognitively and physically stimulating activities that could help to preserve not only these social relationships but also cognitive functioning.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, S.A., Matthews, C.E., Ebbeling, C.B., Moore, C.G., Cunningham, J.E., Fulton, J., & Hebert, J.R. (2005). The effect of social desirability and social approval on self-reports of physical activity. American Journal of Epidemiology, 15, 389398. doi: 10.1093/aje/kwi054.CrossRefGoogle Scholar
Amieva, H., Stovkova, R., Matharan, F., Helmer, C., Antonucci, T.C., & Dartigues, J.F. (2010). What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. Psychosomatic Medicine, 72, 905911. doi: 10.1097/PSY.0b013e3181f5e121.CrossRefGoogle Scholar
Arbuckle, J.L. (1996). Full information estimation in the presence of incomplete data, In Marcoulides, G.A. & Schumacker, R.E. (Eds.), Advanced structural equation modeling techniques (pp. 243277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Arfanakis, K., Wilson, R.S., Barth, C.M., Capuano, A.W., Vasireddi, A., Zhang, S., & Bennett, D.A. (2016). Cognitive activity, cognitive function, and brain diffusion characteristics in old age. Brain Imaging and Behavior, 10, 455463. doi: 10.1007/s11682-015-9405-5.CrossRefGoogle ScholarPubMed
Ball, V., Corr, S., Knight, J., & Lowis, M.J. (2007). An investigation into the leisure occupations of older adults. British Journal of Occupational Therapy, 70, 393400. doi: 10.1177/030802260707000905.CrossRefGoogle Scholar
Barnes, L.L., Mendes de Leon, C.F., Wilson, R.S., Bienias, J.L., & Evans, D.A. (2004). Social resources and cognitive decline in a population of older african americans and whites. Neurology, 28, 23222326. doi: 10.1212/01.WNL.0000147473.04043.B3.CrossRefGoogle Scholar
Barnes, D.E., Yaffe, K., Satariano, W.A., & Tager, I.B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in health older adults. Journal of the American Geriatrics Society, 51, 459465. doi: 10.1046/j.1532-5415.2003.51153.x.CrossRefGoogle Scholar
Basak, C., Boot, W.R., Voss, M.W., & Kramer, A.F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765777. doi: 10.1037/a0013494.CrossRefGoogle Scholar
Béland, F., Zunzunegui, M., Alvarado, B., Otero, A., & del Ser, T. (2005). Trajectories of cognitive decline and social relations. Journal of Gerontology: Psychological Sciences, 60, 320330. doi: 10.1093/geronb/60.6.P320.CrossRefGoogle ScholarPubMed
Bennett, D.A., Schneider, J.A., Tang, Y., Arnold, S.E., & Wilson, R.S. (2006). The effect of social networks on the relation between alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. The Lancet Neurology, 5, 406412. doi: 10.1016/S1474-4422(06)70417-3.CrossRefGoogle ScholarPubMed
Borkowski, J.G., Benton, A.L., & Spreen, O (1967). Word fluency and brain damage. Neuropsychologia, 5, 135140. doi: 10.1016/0028-3932(67)90015-2.CrossRefGoogle Scholar
Brim, O.G., Ryff, C.D., & Kessler, R.C. (2004). How healthy are we? A national study of wellbeing in midlife. Chicago, IL: University of Chicago Press.Google Scholar
Buitenweg, J.I.V., Murre, J.M.J., & Riddenrinkhof, K.R. (2012). Brain training in progress: A review of trainability in healthy seniors. Frontiers in Human Neuroscience, 6, 111. doi: 10.3389/fnhum.2012.00183.CrossRefGoogle ScholarPubMed
Clark, L.R., Schiehser, D.M., Weissberger, G.H., Salmon, D.P., Delis, D.C., & Bondi, M.W. (2012). Specific measures of executive function predict cognitive decline in older adults. Journal of the International Neuropsychological Society, 18, 118127. doi: 10.1017/S1355617711001524.CrossRefGoogle ScholarPubMed
Crooks, V.C., Lubben, J., Petitti, D.B., Little, D., & Chiu, V. (2008). Social network, cognitive function, and dementia incidence among elderly women. American Journal of Public Health, 98(7), 12211227. doi: 10.2105/AJPH.2007.115923.CrossRefGoogle ScholarPubMed
Daselaar, S. & Cabeza, R. (2014). Age-related decline in working memory and episodic memory: Contributions of the prefrontal cortex and medial temporal lobes, In Ochsner, K.N. & Kosslyn, S.M. (Eds.), The Oxford handbook of cognitive neuroscience, Vol. 1: Core topics. (pp. 456–472). Oxford University Press.Google Scholar
Erickson, K.I. & Kramer, A.F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43, 2224. doi: 10.1136/bjsm.2008.052498.CrossRefGoogle ScholarPubMed
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L.Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 30173022. doi: 10.1073/pnas.1015950108.CrossRefGoogle ScholarPubMed
Gill, S.J., Friedenreich, C.M., Sajobi, T.T., Longman, R.S., Drogos, L.L., Davenport, M.H., & Poulin, M.J. (2015). Association between lifetime physical activity and cognitive functioning in middle-aged and older community dwelling adults: Results from the brain in motion study. Journal of the International Neuropsychological Society, 21, 816830. doi: 10.1017/S1355617715000880.CrossRefGoogle ScholarPubMed
Hall, J.A. (2011). Sex differences in friendship expectations: A meta-analysis. Journal of Social and Personal Relationships, 28, 723747. doi: 10.1177/0265407510386192.CrossRefGoogle Scholar
Hayes, S.M., Alosco, M.L., Hayes, J.P., Cadden, M., Peterson, K.M., Allsup, K., & Verfaellie, M. (2015). Physical activity is positively associated with episodic memory in aging. Journal of the International Neuropsychological Society, 21, 780790. doi: 10.1017/S1355617715000910.CrossRefGoogle Scholar
Hertzog, C., Kramer, A.F., Wilson, R.S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 165.CrossRefGoogle Scholar
Hu, L. & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 155.CrossRefGoogle Scholar
Hultsch, D.F., Hertzog, C., Small, B.J., & Dixon, R.A. (1999). Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14, 245263. doi: 10.1037/0882-7974.14.2.245.CrossRefGoogle Scholar
Huxhold, O., Miche, M., & Shüz, B. (2013). Benefits of having friends in older ages: Differential effects of informal social activities on well-being in middle-aged and older adults. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 69, 366375. doi: 10.1093/geronb/gbt029.CrossRefGoogle ScholarPubMed
Ihle, A., Oris, M., Baeriswyl, M., & Kliegel, M. (2018). The relation of close friends to cognitive performance in old age: The mediating role of leisure activities. International Psychogeriatrics, 30, 17531758. doi: 10.1017/S1041610218000789.CrossRefGoogle ScholarPubMed
James, B.D., Wilson, R.S., Barnes, L.L., & Bennett, D.A. (2011). Later-life social activity and cognitive decline in old age. Journal of the International Neuropsychological Society, 17, 9981005. doi: 10.1017/S1355617711000531.CrossRefGoogle Scholar
Jonaitis, E., La Rue, A., Mueller, K.D., Koscik, R.L., Hermann, B., & Sager, M.A. (2013). Cognitive activities and cognitive performance in middle-aged adults at risk for alzheimer’s disease. Psychology and Aging, 28, 10041014. doi: 10.1037/a0034838.CrossRefGoogle ScholarPubMed
Lachman, M.E., Agrigoroaei, S., Murphy, C., & Tun, P.A. (2010). Frequent cognitive activity compensates for education differences in episodic memory. The American Journal of Geriatric Psychiatry, 18, 410. doi: 10.1097/JGP.0b013e3181ab8b62.CrossRefGoogle ScholarPubMed
Lachman, M.E., Agrigoroaei, S., Tun, P.A., & Weaver, S.L. (2014). Monitoring cognitive functioning: Psychometric properties of the brief test of adult cognition by telephone. Assessment, 21, 4040–417. doi: 10.1177/1073191113508807.CrossRefGoogle Scholar
Lachman, M.E. & Weaver, S.L. (1997). The midlife development inventory (MIDI) personality scales: Scale construction and scoring. Technical Report.Google Scholar
Larson, R., Mannell, R., & Zuzanek, J. (1986). Daily well-being of older adults with friends and family. Psychology and Aging, 1, 117126. doi: 10.1037//0882-7974.1.2.117.CrossRefGoogle ScholarPubMed
Lee, G.R. & Ishii-Kuntz, M. (1987). Social interaction, loneliness, and emotional well-being among the elderly. Research on Aging, 9, 459482. doi: 10.1177/0164027587094001.CrossRefGoogle ScholarPubMed
Li, M. & Dong, X. (2018). Is social network a protective factor for cognitive impairment in US Chinese older adults? Findings from the pine study. Gerontology. doi: 10.1159/000485616.CrossRefGoogle Scholar
Maxwell, S.E. & Cole, D.A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12, 2344. doi: 10.1037/1082-989X.12.1.23.CrossRefGoogle ScholarPubMed
McArdle, J.J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577605. doi: 10.1146/annurev.psych.60.110707.163612.CrossRefGoogle ScholarPubMed
Meyer, M.R.U., Janke, M.C., & Beaujean, A.A. (2014). Predictors of older adults’ personal and community mobility: Using a comprehensive theoretical mobility framework. The Gerontologist, 54, 398408. doi: 10.1093/geront/gnt054.CrossRefGoogle Scholar
Mueller, A.E., Raymond, N., & Yochim, B.P. (2013). Cognitive activity engagement predicts future memory and executive functioning in older adults. Activities, Adaptation & Aging, 37, 251264. doi: 10.1080/01924788.2013.816833.Google Scholar
Oswald, D.L. & Clark, E.M. (2003). Best friends forever?: High school best friendships and the transition to college. Personal Relationships, 10, 187196. doi: 10.1111/1475-6811.00045.CrossRefGoogle Scholar
Oswald, D.L., Clark, E.M., & Kelly, C.M. (2004). Friendship maintenance: An analysis of individual and dyad behaviors. Journal of Social and Clinical Psychology, 23, 413441. doi: 10.1521/jscp.23.3.413.35460.CrossRefGoogle Scholar
Reed, B.R., Dowling, M., Farias, S.T., Sonnen, J., Strauss, M., Schneider, J.A., & Mungas, D. (2011). Cognitive activities during adulthood are more important than education in building reserve. Journal of the International Neuropsychological Society, 17, 615624. doi: 10.1017/S1355617711000014.CrossRefGoogle ScholarPubMed
Rey, A. (1964). The clinical examination in psychology. Paris, France: Presse Universitaires de France.Google Scholar
Roberts, S.B.G. & Dunbar, R.I.M. (2015). Managing relationship decay: Network, gender, and contextual effects. Human Nature, 26, 426450. doi: 10.1007/s12110-015-9242-7.CrossRefGoogle ScholarPubMed
Robinson, S.A. & Lachman, M.E. (2018). Perceived control and cognition in adulthood: The mediating role of physical activity. Psychology and Aging, 33, 769781. doi: 10.1037/pag0000273.CrossRefGoogle ScholarPubMed
Rogers, R.L., Meyer, J.S., & Mortel, K.F. (1990). After reaching retirement age physical activity sustains cerebral perfusion and cognition. Journal of the American Geriatrics Society, 38, 123128. doi: 10.1111/j.1532-5415.1990.tb03472.x.CrossRefGoogle ScholarPubMed
Rook, K. & Ituarte, P.H.G. (1999). Social control, social support, and companionship in older adults’ family relationships and friendships. Personal Relationships, 6, 199211. doi: 10.1111/j.1475-6811.1999.tb00187.x.CrossRefGoogle Scholar
Salthouse, T.A. & Prill, K.A. (1987). Inferences about age impairments in inferential reasoning. Psychology and Aging, 2, 4351. doi: 10.1037/0882-7974.2.1.43.CrossRefGoogle ScholarPubMed
Scarmeas, N., Levy, G., Tang, M.X., Manly, J.J., & Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology, 57, 22362242. doi: 10.1212/WNL.57.12.2236.CrossRefGoogle ScholarPubMed
Scarmeas, N., Luchsinger, J.A., Schupf, N., Brickman, A.M., Cosentino, S., Tang, M.X., & Stern, Y. (2009). Physical activity, diet and risk of alzheimer disease. The Journal of the American Medical Association, 302, 627637. 10.1001/jama.2009.1144.CrossRefGoogle ScholarPubMed
Schaie, K.W. (1996). Intellectual development in adulthood: The seattle longitudinal study. New York, NY: Cambridge University Press.Google Scholar
Seeman, T.E., Miller-Martinez, D.M., Merkin, S.S., Lachman, M.E., Tun, P.A., & Karlamangla, A.S. (2011). Histories of social engagement and adult cognition: Midlife in the U.S. study. The Journals of Gerontology: Series B, 66B, 141152. doi: 10.1093/geronb/gbq091.CrossRefGoogle Scholar
Sharifian, N., Manly, J.J., Brickman, A.M., & Zahodne, L.B. (2019). Social network characteristics and cognitive functioning in ethnically diverse older adults: The role of network size and composition. Neuropsychology, 33, 956963. doi: 10.1037/neu0000564.CrossRefGoogle ScholarPubMed
Shiovitz-Ezra, S. & Litwin, H. (2012). Social network type and health-related behaviors: Evidence from an American national survey. Social Science & Medicine, 75, 901904. doi: 10.1016/j.socsci.med.2012.04.031.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448460. doi: 10.1017.S1355617701020240.CrossRefGoogle ScholarPubMed
Teo, A.R., Choi, H., Andrea, S.B., Valenstein, M., Newsom, J.T., Dobscha, S.K., & Zivin, K. (2015). Does mode of contact with different types of social relationships predict depression in older adults? Evidence from a nationally representative survey. Journal of the American Geriatric Society, 63, 20142022. doi: 10.1111/jgs.13667.CrossRefGoogle ScholarPubMed
Tombaugh, T.N., Kozak, J., & Rees, L. (1999). Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology, 14, 167177. doi: 10.1016/S0887-6177(97)00095-4.Google ScholarPubMed
Valenzuela, M.J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS ONE, 3, e2598. doi: 10.1371/journal.pone.0002598.CrossRefGoogle ScholarPubMed
Wang, B., He, P., & Dong, B. (2015). Associations between social networks, social contacts, and cognitive function among Chinese nonagenarians/centenarians. Archives of Gerontology and Geriatrics, 60, 522527. doi: 10.1016/j.archger.2015.01.002.CrossRefGoogle ScholarPubMed
Warburton, D.E., Nicol, C.W., & Bredin, S.S. (2006). Health benefits of physical activity: The evidence. Canadian Medical Association Journal, 174, 801809. doi: 10.1503/cmaj.051351.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler adult intelligence scale – III (WAIS-III) manual. New York, NY: The Psychological Corporation.Google Scholar
Weuve, J., Kang, J.H., Manson, J.E., Breteler, M.M.B., Ware, J.H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. JAMA, 22, 14541461. doi: 10.1001/jama.292.12.1454.CrossRefGoogle Scholar
Whitmer, R.A., Sidney, S., Selby, J., Johnston, C., & Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology, 25, 277281. 10.1212/01.WNL.0000149519.47454.F2.CrossRefGoogle Scholar
Wilson, R.S., Scherr, P.A., Schneider, J.A., Tang, Y., & Bennett, D.A. (2007). The relation of cognitive activity to risk of developing Alzheimer’s disease. Neurology, 69, 19111920. doi: 10.1212/01.wnl.0000271087.67782.cb.CrossRefGoogle Scholar
Zahodne, L.B., Ajrouch, K.J., Sharifian, N., & Antonucci, T.C. (2019). Social relations and age-related change in memory. Psychology & Aging, 34, 751765. doi: 10.1037/pag0000369.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sharifian et al. supplementary material

Sharifian et al. supplementary material

Download Sharifian et al. supplementary material(File)
File 13.9 KB