Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-22T21:54:44.645Z Has data issue: false hasContentIssue false

Executive Function Deficits in Patients after Cerebellar Neurosurgery

Published online by Cambridge University Press:  02 December 2015

Monika Mak
Affiliation:
Independent Clinical Psychology Unit, Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
Ernest Tyburski
Affiliation:
Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Szczecin, Poland
Łukasz Madany
Affiliation:
Neurosurgery Department, Independent Public Specialist Health Care Centre “Zdroje”, Szczecin, Poland
Andrzej Sokołowski
Affiliation:
Faculty of Psychology, University of Warsaw, Warsaw, Poland
Agnieszka Samochowiec*
Affiliation:
Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Szczecin, Poland
*
Correspondence and reprint requests to: Agnieszka Samochowiec, 69 Krakowska St, 71-017 Szczecin, Poland. E-mail: samoaga@tlen.pl

Abstract

The cerebellum has long been perceived as a structure responsible for the human motor function. According to the contemporary approach, however, it plays a significant role in complex behavior regulatory processes. The aim of this study was to describe executive functions in patients after cerebellar surgery. The study involved 30 patients with cerebellar pathology. The control group comprised 30 neurologically and mentally healthy individuals, matched for sex, age, and number of years of education. Executive functions were measured by the Wisconsin Card Sorting Test (WCST), Stroop Color Word Test (SCWT), Trail Making Test (TMT), and working memory by the Digit Span. Compared to healthy controls, patients made more Errors and Perseverative errors in the WCST, gave more Perseverative responses, and had a lower Number of categories completed. The patients exhibited higher response times in all three parts of the SCWT and TMT A and B. No significant differences between the two groups were reported in their performance of the SCWT and TMT with regard to the measures of absolute or relative interference. The patients had lower score on the backward Digit Span. Patients with cerebellar pathology may exhibit some impairment within problem solving and working memory. Their worse performance on the SCWT and TMT could, in turn, stem from their poor motor–somatosensory control, and not necessarily executive deficits. Our results thus support the hypothesis of the cerebellum’s mediating role in the regulation of the activity of the superordinate cognitive control network in the brain. (JINS, 2016, 22, 47–57)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M.P., Gillingham, S., Schweizer, T., & Stuss, D.T. (2012). Cognitive impairments due to focal cerebellar injuries in adults. Cortex, 48, 980990. doi:10.1016/j.cortex.2011.03.012 Google Scholar
Alvarez, J.A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16, 1742. doi:10.1007/s11065-006-9002-x Google Scholar
Anderson, V., Jacobs, R., & Anderson, P.J. (2011). Executive functions and the frontal lobes: A lifespan perspective. New York: Psychology Press.Google Scholar
Aron, A.R., & Poldrack, R.A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. The Journal of Neuroscience, 26, 24242433. doi:10.1523/JNEUROSCI.4682-05.2006 Google Scholar
Baddeley, A., Della Sala, S., Papagno, C., & Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology, 11, 187194. doi:10.1037/0894-4105.11.2.187 Google Scholar
Baddeley, A.D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 129. doi:10.1146/annurev-psych-120710-100422 Google Scholar
Baillieux, H., Smet, H.J.D., Paquier, P.F., De Deyn, P.P., & Mariën, P. (2008). Cerebellar neurocognition: Insights into the bottom of the brain. Clinical Neurology and Neurosurgery, 110, 763773. doi:10.1016/j.clineuro.2008.05.013 Google Scholar
Baillieux, H., De Smet, H.J., Dobbeleir, A., Paquier, P.F., De Deyn, P.P., & Mariën, P. (2010). Cognitive and affective disturbances following focal cerebellar damage in adults: A neuropsychological and SPECT study. Cortex, 46, 869879. doi:10.1016/j.cortex.2009.09.002 Google Scholar
Beldarrain, M.G., Garcia-Monco, J.C., Quintana, J.M., Llorens, V., & Rodeno, E. (1997). Diaschisis and neuropsychological performance after cerebellar stroke. European Neurology, 37, 8289. doi:10.1159/000117415 Google Scholar
Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. The Cerebellum, 6, 184192. doi:10.1080/14734220601169707 Google Scholar
Bostan, A.C., & Strick, P.L. (2010). The cerebellum and basal ganglia are interconnected. Neuropsychology Review, 20, 261270. doi:10.1007/s11065-010-9143-9 Google Scholar
Brunamonti, E., Chiricozzi, F.R., Clausi, S., Olivito, G., Giusti, M.A., Molinari, M., & Leggio, M. (2014). Cerebellar Damage Impairs Executive Control and Monitoring of Movement Generation. PloS One, 9, e85997. doi:10.1371/journal.pone.0085997 Google Scholar
Brzeziński, J., Gaul, M., Hornowska, E., Jaworowska, A., Machowski, A., & Zakrzewska, M. (2004). Skala Inteligencji Wechslera dla Dorosłych - Wersja Zrewidowana. Renormalizacja 2004. Warszawa: Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego.Google Scholar
Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L.A., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 194209. doi:10.1017/S1355617706060310 Google Scholar
Catani, M. (2005). The rises and falls of disconnection syndromes. Brain, 128, 22242239. doi:10.1093/brain/awh622 Google Scholar
Chein, J.M., & Fiez, J.A. (2001). Dissociation of verbal working memory system components using a delayed serial recall task. Cerebral Cortex, 11, 10031014. doi:10.1093/cercor/11.11.1003 Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159. doi:10.1037/0033-2909.112.1.155 Google Scholar
Courchesne, E., & Allen, G. (1997). Prediction and preparation, fundamental functions of the cerebellum. Learning & Memory, 4, 135. doi:10.1101/lm.4.1.1 Google Scholar
D’aes, T., & Mariën, P. (2015). Cognitive and affective disturbances following focal brainstem lesions: A review and report of three cases. The Cerebellum, 14, 317340. doi:10.1007/s12311-014-0626-8 Google Scholar
Demakis, G.J. (2003). A meta-analytic review of the sensitivity of the Wisconsin Card Sorting Test to frontal and lateralized frontal brain damage. Neuropsychology, 17, 255264. doi:10.1037/0894-4105.17.2.255 Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi:10.1146/annurev-psych-113011-143750 Google Scholar
Di Pino, G., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., & Di Lazzaro, V. (2014). Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nature Reviews Neurology, 10, 597608. doi:10.1038/nrneurol.2014.162 Google Scholar
Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., & Petersen, S.E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99105. doi:10.1016/j.tics.2008.01.001 Google Scholar
Drepper, J., Timmann, D., Kolb, F.P., & Diener, H.C. (1999). Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain, 122, 8797. doi:10.1093/brain/122.1.87 Google Scholar
Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24, 539547. doi:10.1016/j.neuroimage.2004.09.007 Google Scholar
Exner, C., Weniger, G., & Irle, E. (2004). Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology, 63, 21322135. doi:10.1212/01.WNL.0000146197.44568.CD Google Scholar
Falkenstein, M., Hielscher, H., Dziobek, I., Schwarzenau, P., Hoormann, J., Sundermann, B., & Hohnsbein, J. (2001). Action monitoring, error detection, and the basal ganglia: An ERP study. Neuroreport, 12, 157161. doi:10.1097/00001756-200101220-00039 Google Scholar
Frings, M., Dimitrova, A., Schorn, C.F., Elles, H.G., Hein-Kropp, C., Gizewski, E.R., & Timmann, D. (2006). Cerebellar involvement in verb generation: An fMRI study. Neuroscience Letters, 409, 1923. doi:10.1016/j.neulet.2006.08.058 Google Scholar
Globas, C., Bösch, S., Zühlke, C., Daum, I., Dichgans, J., & Bürk, K. (2003). The cerebellum and cognition. Journal of Neurology, 250, 14821487. doi:10.1007/s00415-003-0258-2 Google Scholar
Godefroy, O. (2003). Frontal syndrome and disorders of executive functions. Journal of Neurology, 250, 16. doi:10.1007/s00415-003-0918-2 Google Scholar
Golla, H., Thier, P., & Haarmeier, T. (2005). Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain, 128, 15251535. doi:10.1093/brain/awh523 Google Scholar
Gottwald, B., Mihajlovic, Z., Wilde, B., & Mehdorn, H.M. (2003). Does the cerebellum contribute to specific aspects of attention? Neuropsychologia, 41, 14521460. doi:10.1016/S0028-3932(03)00090-3 Google Scholar
Gottwald, B., Wilde, B., Mihajlovic, Z., & Mehdorn, H.M. (2004). Evidence for distinct cognitive deficits after focal cerebellar lesions. Journal of Neurology, Neurosurgery, & Psychiatry, 75, 15241531. doi:10.1136/jnnp.2003.018093 Google Scholar
Grafman, J., Litvan, I., Massaquoi, S., Stewart, M., Sirigu, A., & Hallett, M. (1992). Cognitive planning deficit in patients with cerebellar atrophy. Neurology, 42, 14931493. doi:10.1212/WNL.42.8.1493 Google Scholar
Granziera, C., Schmahmann, J.D., Hadjikhani, N., Meyer, H., & Meuli, R. (2009). Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum. PLoS One, 4, e5101. doi:10.1371/journal.pone.0005101 Google Scholar
Haarmeier, T., & Thier, P. (2007). The attentive cerebellum – Myth or reality? The Cerebellum, 6, 177183. doi:10.1080/14734220701286187 Google Scholar
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C.F., Menon, V., & Greicius, M.D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29, 85868594. doi:10.1523/JNEUROSCI.1868-09.2009 Google Scholar
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin card sort test manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heyder, K., Suchan, B., & Daum, I. (2004). Cortico-subcortical contributions to executive control. Acta Psychologica, 115, 271289. doi:10.1016/j.actpsy.2003.12.010 CrossRefGoogle ScholarPubMed
Hoffmann, M., & Schmitt, F. (2004). Cognitive impairment in isolated subtentorial stroke. Acta Neurologica Scandinavica, 109, 1424. doi:10.1034/j.1600-0404.2003.00169.x Google Scholar
Hokkanen, L.S.K., Kauranen, V., Roine, R.O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology, 13, 161170. doi:10.1111/j.1468-1331.2006.01157.x Google Scholar
Hubrich-Ungureanu, P., Kaemmerer, N., Henn, F.A., & Braus, D.F. (2002). Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 319, 9194. doi:10.1016/S0304-3940(01)02566-6 Google Scholar
Hutchinson, E. (2010). Neuroplasticity: Functional recovery after stroke. Nature Reviews. Neuroscience, 12, 4. doi:10.1038/nrn2965 Google Scholar
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9, 304313. doi:10.1038/nrn2332 Google Scholar
Jaworowska, A. (2002). WCST – Test Sortowania Kart z Wisconsin. Warszawa: Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego.Google Scholar
Jodzio, K., & Biechowska, D. (2010). Wisconsin card sorting test as a measure of executive function impairments in stroke patients. Applied Neuropsychology, 17, 267277. doi:10.1080/09084282.2010.525104 Google Scholar
Jurado, M.B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213233. doi:10.1007/s11065-007-9040-z Google Scholar
Justus, T., Ravizza, S.M., Fiez, J.A., & Ivry, R.B. (2005). Reduced phonological similarity effects in patients with damage to the cerebellum. Brain and Language, 95, 304318. doi:10.1016/j.bandl.2005.02.001 Google Scholar
Kalashnikova, L.A., Zueva, Y.V., Pugacheva, O.V., & Korsakova, N.K. (2005). Cognitive impairments in cerebellar infarcts. Neuroscience and Behavioral Physiology, 35, 773779. doi:10.1007/s11055-005-0123-0 Google Scholar
Karatekin, C., Lazareff, J.A., & Asarnow, R.F. (2000). Relevance of the cerebellar hemispheres for executive functions. Pediatric Neurology, 22, 106112. doi:10.1016/S0887-8994(99)00128-9 Google Scholar
Kellermann, T., Regenbogen, C., De Vos, M., Mößnang, C., Finkelmeyer, A., & Habel, U. (2012). Effective connectivity of the human cerebellum during visual attention. The Journal of Neuroscience, 32, 1145311460. doi:10.1523/JNEUROSCI.0678-12.2012 Google Scholar
Kortte, K.B., Horner, M.D., & Windham, W.K. (2002). The trail making test, part B: Cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9, 106109. doi:10.1207/S15324826AN0902_5 Google Scholar
Koziol, L.F., Budding, D.E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. The Cerebellum, 11, 505525. doi:10.1007/s12311-011-0321-y Google Scholar
Krienen, F.M., & Buckner, R.L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19, 24852497. doi:10.1093/cercor/bhp135 Google Scholar
Lang, C.E., & Bastian, A.J. (2002). Cerebellar damage impairs automaticity of a recently practiced movement. Journal of Neurophysiology, 87, 13361347. doi:10.1152/jn.00368.2001 Google Scholar
Leggio, M.G., Silveri, M.C., Petrosini, L., & Molinari, M. (2000). Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. Journal of Neurology, Neurosurgery, & Psychiatry, 69, 102106. doi:10.1136/jnnp.69.1.102 Google Scholar
Lezak, M.D. (1995). Neuropsychological Assessment (3rd ed.). New York: Oxford University Press.Google Scholar
Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assesment (4th ed.). New York: Oxford University Press.Google Scholar
Macniven, J.A.B., Davis, C., Ho, M.Y., Bradshaw, C.M., Szabadi, E., & Constantinescu, C.S. (2008). Stroop performance in multiple sclerosis: Information processing, selective attention, or executive functioning? Journal of the International Neuropsychological Society, 14, 805814. doi:10.10170S1355617708080946 Google Scholar
Majerus, S., Laureys, S., Collette, F., Del Fiore, G., Degueldre, C., Luxen, A., & Metz‐Lutz, M.N. (2003). Phonological short‐term memory networks following recovery from Landau and Kleffner syndrome. Human Brain Mapping, 19, 133144. doi:10.1002/hbm.10113 Google Scholar
Malm, J., Kristensen, B., Karlsson, T., Carlberg, B., Fagerlund, M., & Olsson, T. (1998). Cognitive impairment in young adults with infratentorial infarcts. Neurology, 51, 433440. doi:10.1212/WNL.51.2.433 Google Scholar
Manes, F., Villamil, A.R., Ameriso, S., Roca, M., & Torralva, T. (2009). “Real life” executive deficits in patients with focal vascular lesions affecting the cerebellum. Journal of the Neurological Sciences, 283, 9598. doi:10.1016/j.jns.2009.02.316 Google Scholar
Marvel, C.L., & Desmond, J.E. (2012). From storage to manipulation: How the neural correlates of verbal working memory reflect varying demands on inner speech. Brain and Language, 120, 4251. doi:10.1016/j.bandl.2011.08.005 Google Scholar
Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., & Kimura, J. (1996). Cerebral activation during performance of a card sorting test. Brain, 119, 16671675. doi:10.1093/brain/119.5.1667 Google Scholar
Neau, J.P., Anllo, E.A., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102, 363370. doi:10.1034/j.1600-0404.2000.102006363.x Google Scholar
Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., & Carter, C.S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12, 241268. doi:10.3758/s13415-011-0083-5 Google Scholar
O’Reilly, J.X., Beckmann, C.F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953965. doi:10.1093/cercor/bhp157 Google Scholar
Paolo, A.M., Tröster, A.I., Axelrod, B.N., & Koller, W.C. (1995). Construct validity of the WCST in normal elderly and persons with Parkinson’s disease. Archives of Clinical Neuropsychology, 10, 463473. doi:10.1093/arclin/10.5.463 Google Scholar
Peterburs, J., Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2010). Working memory and verbal fluency deficits following cerebellar lesions: Relation to interindividual differences in patient variables. The Cerebellum, 9, 375383. doi:10.1007/s12311-010-0171-z Google Scholar
Polgár, P., Réthelyi, J.M., Bálint, S., Komlósi, S., Czobor, P., & Bitter, I. (2010). Executive function in deficit schizophrenia: What do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophrenia Research, 122, 8593. doi:10.1016/j.schres.2010.06.007 Google Scholar
Ravizza, S.M. (2001). Relating selective brain damage to impairments with voicing contrasts. Brain and Language, 77, 95118. doi:10.1006/brln.2000.2435 Google Scholar
Ravizza, S.M., McCormick, C.A., Schlerf, J.E., Justus, T., Ivry, R.B., & Fiez, J.A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306320. doi:10.1093/brain/awh685 Google Scholar
Reitan, R.M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276. doi:10.2466/pms.1958.8.3.271 Google Scholar
Rosenthal, R., & Rubin, D.B. (2003). r equivalent: A simple effect size indicator. Psychological Methods, 8, 492496. doi:10.1037/1082-989X.8.4.492 Google Scholar
Rousseaux, M., & Steinling, M. (1992). Crossed hemispheric diaschisis in unilateral cerebellar lesions. Stroke, 23, 511514. doi:10.1161/01.STR.23.4.511 Google Scholar
Rubia, K., Smith, A.B., Taylor, E., & Brammer, M. (2007). Linear age‐correlated functional development of right inferior fronto‐striato‐cerebellar networks during response inhibition and anterior cingulate during error‐related processes. Human Brain Mapping, 28, 11631177. doi:10.1002/hbm.20347 Google Scholar
Schmahmann, J.D. (1991). An emerging concept: The cerebellar contribution to higher function. Archives of Neurology, 48, 11781187. doi:10.1001/archneur.1991.00530230086029 Google Scholar
Schmahmann, J.D. (1997). The cerebellum and cognition. London: Academic Press.Google Scholar
Schmahmann, J.D., & Sherman, J.C. (1998). The cerebellar cognitive affective syndrome. Brain, 121, 561579. doi:10.1093/brain/121.4.561 Google Scholar
Schmahmann, J.D. (2010). The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychology Review, 20, 236260. doi:10.1007/s11065-010-9142-x Google Scholar
Schweizer, T.A., Alexander, M.P., Susan Gillingham, B.A., Cusimano, M., & Stuss, D.T. (2010). Lateralized cerebellar contributions to word generation: A phonemic and semantic fluency study. Behavioural Neurology, 23, 3137. doi:10.3233/BEN-2010-0269 Google Scholar
Stoodley, C.J., & Schmahmann, J.D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46, 831844. doi:10.1016/j.cortex.2009.11.008 Google Scholar
Stoodley, C.J., Valera, E.M., & Schmahmann, J.D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59, 15601570. doi:10.1016/j.neuroimage.2011.08.065 Google Scholar
Strauss, E., Sherman, E., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford: Oxford University Press.Google Scholar
Strick, P.L., Dum, R.P., & Fiez, J.A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413434. doi:10.1146/annurev.neuro.31.060407.125606 Google Scholar
Stuss, D.T., Levine, B., Alexander, M.P., Hong, J., Palumbo, C., Hamer, L., & Izukawa, D. (2000). Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia, 38, 388402. doi:10.1016/S0028-3932(99)00093-7 Google Scholar
Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., & Borgatti, R. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130, 26462660. doi:10.1093/brain/awm201 Google Scholar
Tombaugh, T.N. (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19, 203214. doi:10.1016/S0887-6177(03)00039-8 Google Scholar
Tulsky, D.S., Saklofske, D.H., Chelune, G.J., Heaton, R.K., Ivnik, R.J., Bornstein, R., & Pifitera, A., & Ledbetter, M.F. (2003). Clinical interpretation of the WAIS-III and WMS-III. San Diego: Academic Press.Google Scholar
Turner, B.M., Paradiso, S., Marvel, C.L., Pierson, R., Ponto, L.L.B., Hichwa, R.D., & Robinson, R.G. (2007). The cerebellum and emotional experience. Neuropsychologia, 45, 13311341. doi:10.1016/j.neuropsychologia.2006.09.023 Google Scholar
Tyburski, E., Potemkowski, A., Chęć, M., Sołtys, A., Mak, M., & Samochowiec, A.. Specificity of attention and cognitive inhibition processes in relapsing-remitting multiple sclerosis patients with consideration of their mood level. Psychiatria Polska, 48, 307318.Google Scholar
Ullsperger, M., & von Cramon, D.Y. (2006). The role of intact frontostriatal circuits in error processing. Journal of Cognitive Neuroscience, 18, 651664. doi:10.1162/jocn.2006.18.4.651 Google Scholar
Wendt, H.W. (1972). Dealing with a common problem in Social science: A simplified rank‐biserial coefficient of correlation based on the U statistic. The European Journal of Social Psychology, 2, 463465. doi:10.1002/ejsp.2420020412 Google Scholar
Wilde, N.J., Strauss, E., & Tulsky, D.S. (2004). Memory span on the Wechsler scales. Journal of Clinical and Experimental Neuropsychology, 26, 539549. doi:10.1080/13803390490496605 Google Scholar
Vorhold, V., Giessing, C., Wiedemann, P.M., Schütz, H., Gauggel, S., & Fink, G.R. (2007). The neural basis of risk ratings: Evidence from a functional magnetic resonance imaging (fMRI) study. Neuropsychologia, 45, 32423250. doi:10.1016/j.neuropsychologia.2007.06.023 Google Scholar
Yarkoni, T., Gray, J.R., Chrastil, E.R., Barch, D.M., Green, L., & Braver, T.S. (2005). Sustained neural activity associated with cognitive control during temporally extended decision making. Cognitive Brain Research, 23, 7184. doi:10.1016/j.cogbrainres.2005.01.013 Google Scholar