Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T11:20:50.893Z Has data issue: false hasContentIssue false

Ecological validity of cognitive fluctuations in dementia with Lewy bodies

Published online by Cambridge University Press:  14 April 2023

Troy A. Webber*
Affiliation:
Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA Department of Psychiatry/Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
Sara A. Lorkiewicz
Affiliation:
Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
Andrew M. Kiselica
Affiliation:
School of Health Professions, University of Missouri, Colombia, MO, USA
Steven P. Woods
Affiliation:
Department of Psychology, University of Houston, Houston, TX, USA
*
Corresponding author: Troy A. Webber, E-mail: Troy.Webber@va.gov

Abstract

Objectives:

Cognitive fluctuations are a core clinical feature of dementia with Lewy bodies (DLB), but their contribution to the everyday functioning difficulties evident DLB are not well understood. The current study evaluated whether intraindividual variability across a battery of neurocognitive tests (intraindividual variability-dispersion) and daily cognitive fluctuations as measured by informant report are associated with worse daily functioning in DLB.

Methods:

The study sample included 97 participants with consensus-defined DLB from the National Alzheimer’s Coordinating Center (NACC). Intraindividual variability-dispersion was measured using the coefficient of variation, which divides the standard deviation of an individual’s performance scores across 12 normed neurocognitive indices from the NACC neuropsychological battery by that individual’s performance mean. Informants reported on daily cognitive fluctuations using the Mayo Fluctuations Scale (MFS) and on daily functioning using the functional activities questionnaire (FAQ).

Results:

Logistic regression identified a large univariate association of intraindividual variability-dispersion and presence of daily cognitive fluctuations on the MFS (Odds Ratio = 73.27, 95% Confidence Interval = 1.38, 3,895.05). Multiple linear regression demonstrated that higher intraindividual variability-dispersion and presence of daily cognitive fluctuations as assessed by the MFS were significantly and independently related to worse daily functioning (FAQ scores).

Conclusions:

Among those with DLB, informant-rated daily cognitive fluctuations and cognitive fluctuations measured in the clinic (as indexed by intraindividual variability-dispersion across a battery of tests) were independently associated with poorer everyday functioning. These data demonstrate ecological validity in measures of cognitive fluctuations in DLB.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author Note: Data and study materials may be made available upon request from the National Alzheimer’s Coordinating Center (NACC). All analysis code may be available upon request. The study’s design and analysis were not pre-registered.

References

Ballard, C., O’Brien, J., Gray, A., Cormack, F., Ayre, G., Rowan, E., Thompson, P., Bucks, R., McKeith, I., Walker, M., & Tovee, M. (2001). Attention and fluctuating attention in patients with dementia with Lewy bodies and Alzheimer disease. Archives of Neurology, 58(6), 977982. https://doi.org/10.1001/archneur.58.6.977 CrossRefGoogle ScholarPubMed
Ballard, C., Walker, M., O’Brien, J., Rowan, E., & McKeith, I. (2001). The characterisation and impact of ‘fluctuating’ cognition in dementia with Lewy bodies and Alzheimer’s disease. International Journal of Geriatric Psychiatry, 16(5), 494498. https://doi.org/10.1002/GPS.368 CrossRefGoogle ScholarPubMed
Bangen, K.J., Weigand, A.J., Thomas, K.R., Delano-Wood, L., Clark, L.R., Eppig, J., Werhane, M.L., Edmonds, E.C., & Bondi, M.W. (2019). Cognitive dispersion is a sensitive marker for early neurodegenerative changes and functional decline in nondemented older adults. Neuropsychology, 33(5), 599608. https://doi.org/10.1037/neu0000532 CrossRefGoogle ScholarPubMed
Belden, C.M., Kahlon, V., Malek-Ahmadi, M., Tsai, A., & Sabbagh, M.N. (2015). Clinical characterization of mild cognitive impairment as a prodrome to dementia with Lewy bodies. American Journal of Alzheimer’s Disease and Other Dementias, 30(2), 173177. https://doi.org/10.1177/1533317514542642 CrossRefGoogle ScholarPubMed
Besser, L., Kukull, W., Knopman, D.S., Chui, H., Galasko, D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J., Quinn, J., Sweet, R.A., Rascovsky, K., Teylan, M., Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S., Mock, C., Zhou, X.H., … & Morris, J.C. (2018). Version 3 of the national Alzheimer’s coordinating center’s uniform data set. Alzheimer Disease and Associated Disorders, 32, 351358. https://doi.org/10.1097/WAD.0000000000000279 CrossRefGoogle ScholarPubMed
Blanc, F. (n.d.). Personalized repetitive transcranial magnetic stimulation (rTMS) in cognitive fluctuations of dementia with Lewy bodies (DLB): Proof of concept. Retrieved December 10, 2021, from https://clinicaltrials.gov/ct2/show/NCT05138588?term=cognitive+fluctuations&cond=Dementia+with+Lewy+Bodies&draw=2&rank=1 Google Scholar
Bliwise, D.L., Scullin, M.K., & Trotti, L.M. (2014). Fluctuations in cognition and alertness vary independently in dementia with Lewy bodies. Movement Disorders, 29(1), 8389. https://doi.org/10.1002/mds.25707 CrossRefGoogle ScholarPubMed
Bradshaw, J., Saling, M., Hopwood, M., Anderson, V., & Brodtmann, A. (2004). Fluctuating cognition in dementia with Lewy bodies and Alzheimer’s disease is qualitatively distinct. Journal of Neurology, Neurosurgery and Psychiatry, 75(3), 382387. https://doi.org/10.1136/jnnp.2002.002576 CrossRefGoogle ScholarPubMed
Bunce, D.J., Warr, P.B., & Cochrane, T. (1993). Blocks in choice responding as a function of age and physical fitness. Psychology and Aging, 8(1), 2633. https://doi.org/10.1037/0882-7974.8.1.26 CrossRefGoogle ScholarPubMed
Calil, V., Silveira de Souza, A., Sudo, F.K., Santiago-Bravo, G., Assunção, N., Drummond, C., Rodrigues, F., Soares, R., Oliveira, N., Teldeschi, A., Bernardes, G., Lima, G., Lima, C., Lima, M.A., & Mattos, P. (2021). Anosognosia for memory in dementia with Lewy bodies compared with Alzheimer’s disease. International Journal of Geriatric Psychiatry, 36(7), 10591064. https://doi.org/10.1002/GPS.5521 CrossRefGoogle ScholarPubMed
Charlson, M.E., Charlson, R.E., Peterson, J.C., Marinopoulos, S.S., Briggs, W.M., & Hollenberg, J.P. (2008). The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. Journal of Clinical Epidemiology, 61(12), 12341240. https://doi.org/10.1016/j.jclinepi.2008.01.006 CrossRefGoogle ScholarPubMed
Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21(3), 217227. https://doi.org/10.1016/j.acn.2005.12.002 CrossRefGoogle ScholarPubMed
Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics: Simulation and Computation, 39(4), 860864. https://doi.org/10.1080/03610911003650383 CrossRefGoogle Scholar
Chin, K.S., Teodorczuk, A., & Watson, R. (2019). Dementia with Lewy bodies: Challenges in the diagnosis and management. Australian and New Zealand Journal of Psychiatry, 53, 291303. SAGE Publications Inc. https://doi.org/10.1177/0004867419835029 CrossRefGoogle ScholarPubMed
Costa, A.S., Dogan, I., Schulz, J.B., & Reetz, K. (2019). Going beyond the mean: Intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders. Clinical Neuropsychologist, 33(2), 369389. https://doi.org/10.1080/13854046.2018.1533587 CrossRefGoogle ScholarPubMed
Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Luby, J., Dagogo-Jack, A., & Alderson, A. (1996). Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiology of Aging, 17(1), 123130. https://doi.org/10.1016/0197-4580(95)02002-0 CrossRefGoogle ScholarPubMed
Farias, S.T., Gravano, J., Weakley, A., Schmitter-Edgecombe, M., Harvey, D., Mungas, D., Chan, M., & Giovannetti, T. (2020). The Everyday Compensation (EComp) Questionnaire: Construct validity and associations with diagnosis and longitudinal change in cognition and everyday function in older adults. Journal of the International Neuropsychological Society, 26(3), 303313. https://doi.org/10.1017/S135561771900119X CrossRefGoogle Scholar
Farias, S.T., Mungas, D., Reed, B.R., Cahn-Weiner, D., Jagust, W., Baynes, K., & DeCarli, C. (2008). The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology, 22(4), 531544. https://doi.org/10.1037/0894-4105.22.4.531 CrossRefGoogle ScholarPubMed
Fellows, R.P., & Schmitter-Edgecombe, M. (2015). Between-domain cognitive dispersion and functional abilities in older adults. Journal of Clinical and Experimental Neuropsychology, 37(10), 10131023. https://doi.org/10.1080/13803395.2015.1050360 CrossRefGoogle ScholarPubMed
Ferman, T.J., Smith, G.E., Boeve, B.F., Ivnik, R.J., Petersen, R.C., Knopman, D., Graff-Radford, N., Parisi, J., & Dickson, D.W. (2004). Specific features that reliably differentiate DLB from AD and normal aging. Neurology, 62(2), 181187. https://doi.org/10.1212/WNL.62.2.181 CrossRefGoogle ScholarPubMed
Field-Fote, E.E. (2019). Mediators and moderators, confounders and covariates: Exploring the variables that illuminate or obscure the “Active Ingredients” in neurorehabilitation. Journal of Neurologic Physical Therapy: JNPT, 43(2), 8384. https://doi.org/10.1097/NPT.0000000000000275 CrossRefGoogle Scholar
Fillenbaum, G.G., Peterson, B., & Morris, J.C. (1996). Estimating the validity of the clinical dementia rating scale: The CERAD experience. Aging, 8(6), 379385. https://doi.org/10.1007/bf03339599 Google ScholarPubMed
Galvin, J.E., Chrisphonte, S., Cohen, I., Greenfield, K.K., Kleiman, M.J., Moore, C., Riccio, M.L., Rosenfeld, A., Shkolnik, N., Walker, M., Chang, L.C., & Tolea, M.I. (2021). Characterization of dementia with Lewy bodies (DLB) and mild cognitive impairment using the Lewy body dementia module (LBD-MOD). Alzheimer’s & Dementia. https://doi.org/10.1002/alz.12334 CrossRefGoogle ScholarPubMed
Gleason, C.E., Norton, D., Anderson, E.D., Wahoske, M., Washington, D.T., Umucu, E., Koscik, R.L., Dowling, N.M., Johnson, S.C., Carlsson, C.M., Asthana, S., Asthana, S., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Cognitive variability predicts incident Alzheimer’s disease and mild cognitive impairment comparable to a cerebrospinal fluid biomarker. Journal of Alzheimer’s Disease, 61(1), 7989. https://doi.org/10.3233/JAD-170498 CrossRefGoogle ScholarPubMed
Gollan, T.H., Weissberger, G.H., Runnqvist, E., Montoya, R.I., & Cera, C.M. (2012). Self-ratings of spoken language dominance: A Multilingual Naming Test (MINT) and preliminary norms for young and aging Spanish-English bilinguals. Bilingualism, 15(3), 594615. https://doi.org/10.1017/S1366728911000332 CrossRefGoogle Scholar
González, D.A., Clark, M.J., Gonzales, M.M., & Benge, J. (2022). Brief report: An evaluation of item bias on the functional activities questionnaire. Archives of Clinical Neuropsychology. https://doi.org/10.1093/arclin/acac071 Google Scholar
González, D.A., Gonzales, M.M., Resch, Z.J., Sullivan, A.C., & Soble, J.R. (2022). Comprehensive Evaluation of the Functional Activities Questionnaire (FAQ) and its reliability and validity. Assessment, 29(4), 748763. https://doi.org/10.1177/1073191121991215 CrossRefGoogle ScholarPubMed
Hamilton, C.A., Matthews, F.E., Donaghy, P.C., Taylor, J.-P., O’Brien, J.T., Barnett, N., Olsen, K., Durcan, R., Roberts, G., Ciafone, J., Barker, S.A.H., Firbank, M., McKeith, I.G., & Thomas, A.J. (2021). Progression to Dementia in mild cognitive impairment with Lewy bodies or Alzheimer disease. Neurology, https://doi.org/10.1212/wnl.0000000000012024 CrossRefGoogle ScholarPubMed
Hansen, L., Salmon, D., Galasko, D., Masliah, E., Katzman, R., Deteresa, R., Thal, L., Pay, M.M., Hofstetter, R., Klauber, M., … & Alford, M. (1990). The Lewy body variant of Alzheimer’s disease: A clinical and pathologic entity. Neurology, 40(1), 18. https://doi.org/10.1212/wnl.40.1.1 CrossRefGoogle ScholarPubMed
Heaton, R.K. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults, professional manual. Psychological Assessment Resources.Google Scholar
Hines, L.J., Miller, E.N., Hinkin, C.H., Alger, J.R., Barker, P., Goodkin, K., Martin, E.M., Maruca, V., Ragin, A., Sacktor, N., Sanders, J., Selnes, O., Becker, J.T., & for the Multicenter AIDS Cohort Study. (2016). Cortical brain atrophy and intra-individual variability in neuropsychological test performance in HIV disease. Brain Imaging and Behavior, 10(3), 640651. https://doi.org/10.1007/s11682-015-9441-1 CrossRefGoogle ScholarPubMed
Ivanova, I., Salmon, D.P., & Gollan, T.H. (2013). Multilingual naming test in Alzheimer’s disease: Clues to the origin of naming impairments. Journal of the International Neuropsychological Society, 19(3), 272283. https://doi.org/10.1017/S1355617712001282 CrossRefGoogle Scholar
Jones, J.D., Kuhn, T., Mahmood, Z., Singer, E.J., Hinkin, C.H., & Thames, A.D. (2018). Longitudinal intra-individual variability in neuropsychological performance relates to white matter changes in HIV. Neuropsychology, 32(2), 206212. https://doi.org/10.1037/neu0000390 CrossRefGoogle ScholarPubMed
Kiselica, A.M., & Benge, J.F. (2019). Quantitative and qualitative features of executive dysfunction in frontotemporal and Alzheimer’s dementia. 28(4), 449463. https://doi.org/10.1080/23279095.2019.1652175 CrossRefGoogle Scholar
Kiselica, A.M., Johnson, E., & Benge, J.F. (2021). How impaired is too impaired? Exploring futile neuropsychological test patterns as a function of dementia severity and cognitive screening scores. Journal of Neuropsychology, 15(3), 410427. https://doi.org/10.1111/jnp.12243 CrossRefGoogle ScholarPubMed
Kiselica, A.M., Kaser, A.N., & Benge, J.F. (2021). An initial empirical operationalization of the earliest stages of the Alzheimer’s continuum. Alzheimer Disease and Associated Disorders, 35(1), 6267. https://doi.org/10.1097/WAD.0000000000000408 CrossRefGoogle ScholarPubMed
Kiselica, A.M., Webber, T.A., & Benge, J.F. (2020a). The uniform dataset 3.0 neuropsychological battery: Factor structure, invariance testing, and demographically adjusted factor score calculation. Journal of the International Neuropsychological Society, 26(6), 576586. https://doi.org/10.1017/S135561772000003X CrossRefGoogle ScholarPubMed
Kiselica, A.M., Webber, T.A., & Benge, J.F. (2020b). Using multivariate base rates of low scores to understand early cognitive declines on the uniform data set 3.0 neuropsychological battery. Neuropsychology, 34(6), 629640. https://doi.org/10.1037/NEU0000640 CrossRefGoogle ScholarPubMed
Koscik, R.L., Berman, S.E., Clark, L.R., Mueller, K.D., Okonkwo, O.C., Gleason, C.E., Hermann, B.P., Sager, M.A., & Johnson, S.C. (2016). Intraindividual cognitive variability in middle age predicts cognitive impairment 8–10 years later: Results from the Wisconsin Registry for Alzheimer’s Prevention. Journal of the International Neuropsychological Society, 22(10), 10161025. https://doi.org/10.1017/S135561771600093X CrossRefGoogle ScholarPubMed
LaPlume, A.A., Anderson, N.D., McKetton, L., Levine, B., & Troyer, A.K. (2022). When I’m 64: Age-related variability in over 40,000 online cognitive test takers. Journals of Gerontology – Series B Psychological Sciences and Social Sciences, 77(1), 104117. https://doi.org/10.1093/geronb/gbab143 CrossRefGoogle Scholar
Lea, R.S., Benge, J.F., Adler, C.H., Beach, T.G., Belden, C.M., Zhang, N., Shill, H.A., Driver-Dunckley, E., Mehta, S.H., & Atri, A. (2021). An initial exploration of the convergent and ecological validity of the UDS 3.0 neuropsychological battery in Parkinson’s Disease. Journal of Clinical and Experimental Neuropsychology, 43(9), 918925. https://doi.org/10.1080/13803395.2022.2034753 CrossRefGoogle ScholarPubMed
Lee, D.R., McKeith, I., Mosimann, U., Ghosh-Nodyal, A., & Thomas, A.J. (2013). Examining carer stress in dementia: The role of subtype diagnosis and neuropsychiatric symptoms. International Journal of Geriatric Psychiatry, 28(2), 135141. https://doi.org/10.1002/gps.3799 CrossRefGoogle ScholarPubMed
Lee, D.R., Taylor, J.P., & Thomas, A.J. (2012). Assessment of cognitive fluctuation in dementia: A systematic review of the literature. International Journal of Geriatric Psychiatry, 27, 989998. John Wiley & Sons, Ltd. https://doi.org/10.1002/gps.2823 CrossRefGoogle ScholarPubMed
Litvan, I., MacIntyre, A., Goetz, C.G., Wenning, G.K., Jellinger, K., Verny, M., Bartko, J.J., Jankovic, J., McKee, A., Brandel, J.P., Chaudhuri, K.R., Lai, E.C., D’Olhaberriague, L., Pearce, R.K., & Agid, Y. (1998). Accuracy of the clinical diagnoses of Lewy body disease, Parkinson disease, and dementia with Lewy bodies: A clinicopathologic study. Archives of Neurology, 55(7), 969978. https://doi.org/10.1001/archneur.55.7.969 CrossRefGoogle ScholarPubMed
Matar, E., Shine, J.M., Halliday, G.M., & Lewis, S.J.G. (2020). Cognitive fluctuations in Lewy body dementia: Towards a pathophysiological framework. Brain, 143, 3146. Oxford University Press. https://doi.org/10.1093/brain/awz311 CrossRefGoogle ScholarPubMed
McKeith, I.G., Boeve, B.F., Dickson, D.W., Halliday, G., Taylor, J.P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C.G., Bayston, A., Beach, T.G., Blanc, F., Bohnen, N., Bonanni, L., Bras, J., Brundin, P., Burn, D., Chen-Plotkin, A., … & Kosaka, K. (2017). Diagnosis and management of dementia with Lewy bodies. Neurology, 89, 88100. Lippincott Williams and Wilkins. https://doi.org/10.1212/WNL.0000000000004058 CrossRefGoogle Scholar
Mega, M.S., Masterman, D.L., Benson, D.F., Vinters, H.V., Tomiyasu, U., Craig, A.H., Foti, D.J., Kaufer, D., Scharre, D.W., Fairbanks, L., & Cummings, J.L. (1996). Dementia with Lewy bodies. Neurology, 47(6), 14031409. https://doi.org/10.1212/WNL.47.6.1403 CrossRefGoogle ScholarPubMed
Morgan, E.E., Woods, S.P., & Grant, I. (2012). Intra-individual neurocognitive variability confers risk of dependence in activities of daily living among HIV-seropositive individuals without HIV-associated neurocognitive disorders. Archives of Clinical Neuropsychology, 27(3), 293303. https://doi.org/10.1093/arclin/acs003 CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The clinical dementia rating (cdr): Current version and scoring rules. Neurology, 43(11), 24122414. https://doi.org/10.1212/wnl.43.11.2412-a CrossRefGoogle ScholarPubMed
O’Brien, R.M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673690.CrossRefGoogle Scholar
Partington, J.E., & Leiter, G.R. (1949). Partington’s pathways test. Psychological Service Center Journal, 1, 1120.Google Scholar
Pfeffer, R.I., Kurosaki, T.T., Harrah, C.H., Chance, J.M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journals of Gerontology, 37(3), 323329. https://doi.org/10.1093/geronj/37.3.323 CrossRefGoogle ScholarPubMed
Possin, K.L., Laluz, V.R., Alcantar, O.Z., Miller, B.L., & Kramer, J.H. (2011). Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer’s disease and behavioral variant frontotemporal dementia. Neuropsychologia, 49(1), 4348. https://doi.org/10.1016/j.neuropsychologia.2010.10.026 CrossRefGoogle ScholarPubMed
Rabin, L.A., Spadaccini, A.T., Brodale, D.L., Grant, K.S., Elbulok-Charcape, M.M., & Barr, W.B. (2014). Utilization rates of computerized tests and test batteries among clinical neuropsychologists in the United States and Canada. Professional Psychology: Research and Practice, 45(5), 368377. https://doi.org/10.1037/a0037987 CrossRefGoogle Scholar
Raichle, M.E. (2015). The Brain’s default mode network. Annual Review of Neuroscience, 38, 433447. https://doi.org/10.1146/annurev-neuro-071013-014030 CrossRefGoogle ScholarPubMed
Rizzo, G., Arcuti, S., Copetti, M., Alessandria, M., Savica, R., Fontana, A., Liguori, R., & Logroscino, G. (2018). Accuracy of clinical diagnosis of dementia with Lewy bodies: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 89, 358366. BMJ Publishing Group. https://doi.org/10.1136/jnnp-2017-316844 CrossRefGoogle ScholarPubMed
Salmon, D.P., & Bondi, M.W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257282. https://doi.org/10.1146/annurev.psych.57.102904.190024 CrossRefGoogle ScholarPubMed
Sheikh, J.I., & Yesavage, J.A. (1986). Geriatric depression scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontologist, 5(1–2), 165173. https://doi.org/10.1300/J018v05n01_09 Google Scholar
Stuss, D.T., Murphy, K.J., Binns, M.A., & Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126(11), 23632380. https://doi.org/10.1093/brain/awg237 CrossRefGoogle ScholarPubMed
Sullivan, K., & Bowden, S.C. (1997). Which tests do neuropsychologists use? Journal of Clinical Psychology, 53(7), 657661. https://doi.org/10.1002/(SICI)1097-4679(199711)53:7<657::AID-JCLP3>3.0.CO;2-F 3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Tappen, R.M., Rosselli, M., & Engstrom, G. (2010). Evaluation of the functional activities questionnaire (FAQ) in cognitive screening across four American ethnic groups. Clinical Neuropsychologist, 24(4), 646661. https://doi.org/10.1080/13854040903482855 CrossRefGoogle ScholarPubMed
Teng, E., Becker, B.W., Woo, E., Knopman, D.S., Cummings, J.L., & Lu, P.H. (2010). Utility of the functional activities questionnaire for distinguishing mild cognitive impairment from very mild Alzheimer disease. Alzheimer Disease and Associated Disorders, 24(4), 348353. https://doi.org/10.1097/WAD.0b013e3181e2fc84 CrossRefGoogle ScholarPubMed
Tractenberg, R.E., & Pietrzak, R.H. (2011). Intra-individual variability in Alzheimer’s disease and cognitive aging: Definitions, context, and effect sizes. PLoS ONE, 6(4), e16973. https://doi.org/10.1371/journal.pone.0016973 CrossRefGoogle ScholarPubMed
Walker, M.P., Ayre, G.A., Cummings, J.L., Wesnes, K., McKeith, I.G., O’Brien, J.T., & Ballard, C.G. (2000a). Quantifying fluctuation in dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. Neurology, 54(8), 16161624. https://doi.org/10.1212/wnl.54.8.1616 CrossRefGoogle ScholarPubMed
Walker, M.P., Ayre, G.A., Cummings, J.L., Wesnes, K., McKeith, I.G., O’Brien, J.T., & Ballard, C.G. (2000b). The clinician assessment of fluctuation and the one day fluctuation assessment scale: Two methods to assess fluctuating confusion in dementia. British Journal of Psychiatry, 177(SEPT), 252256. https://doi.org/10.1192/bjp.177.3.252 CrossRefGoogle ScholarPubMed
Webber, T.A., Kiselica, A.M., Mikula, C., & Woods, S.P. (2022). Dispersion-based cognitive intra-individual variability in dementia with Lewy bodies. Neuropsychology. https://doi.org/10.1037/NEU0000856 CrossRefGoogle ScholarPubMed
Weintraub, S., Besser, L., Dodge, H.H., Teylan, M., Ferris, S., Goldstein, F.C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S.D., Atri, A., Kukull, W.A., Phelps, C., & Morris, J.C. (2018). Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the uniform data set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 1017. https://doi.org/10.1097/WAD.0000000000000223 CrossRefGoogle ScholarPubMed
Wilcox, R. (2005). Trimming and Winsorization. In Encyclopedia of biostatistics. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470011815.b2a15165 CrossRefGoogle Scholar
Yin, L., Ren, Y., Wang, X., Li, Y., Hou, T., Liu, K., Cong, L., Zhang, Q., Wang, Y., Jiang, Z., & Du, Y. (2020). The power of the Functional Activities Questionnaire for screening dementia in rural-dwelling older adults at high-risk of cognitive impairment. Psychogeriatrics, 20(4), 427436. https://doi.org/10.1111/psyg.12524.CrossRefGoogle ScholarPubMed
Supplementary material: File

Webber et al. supplementary material

Webber et al. supplementary material

Download Webber et al. supplementary material(File)
File 14.8 KB