Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T00:14:41.537Z Has data issue: false hasContentIssue false

Comparative Effects of Physical Exercise and Other Behavioral Interventions on Functional Status Outcomes in Mild Cognitive Impairment

Published online by Cambridge University Press:  26 July 2021

Anne L. Shandera-Ochsner
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic Health System, 700 West Ave S, La Crosse, WI54601, USA
Melanie J. Chandler
Affiliation:
Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL32224, USA
Dona E. Locke
Affiliation:
Division of Psychology, Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ85259, USA
Colleen T. Ball
Affiliation:
Division of Biomedical Statistics and Informatics, Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ85259, USA
Julia E. Crook
Affiliation:
Division of Biomedical Statistics and Informatics, Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ85259, USA
Vaishali S. Phatak
Affiliation:
Department of Neurological Sciences, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE68198, USA
Glenn E. Smith*
Affiliation:
Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL32610, USA
*
*Correspondence and reprint requests to: Dr. Smith, Department of Clinical and Health Psychology, University of Florida, PO Box 100165, Gainesville, FL 32610-0165, USA. E-mail: glennsmith@phhp.ufl.edu

Abstract

Objectives:

Lifestyle modifications for those with mild cognitive impairment (MCI) may promote functional stability, lesson disease severity, and improve well-being outcomes such as quality of life. The current analysis of our larger comparative effectiveness study evaluated which specific combinations of lifestyle modifications offered as part of the Mayo Clinic Healthy Action to Benefit Independence in Thinking (HABIT) program contributed to the least functional decline in people with MCI (pwMCI) over 18 months.

Methods:

We undertook to compare evidence-based interventions with one another rather than to a no-treatment control group. The interventions were five behavioral treatments: computerized cognitive training (CCT), yoga, Memory Support System (MSS) training, peer support group (SG), and wellness education (WE), each delivered to both pwMCI and care partners, in a group-based program. To compare interventions, we randomly withheld one of the five HABIT® interventions in each of the group sessions. We conducted 24 group sessions with between 8 and 20 pwMCI–partner dyads in a session.

Results:

Withholding yoga led to the greatest declines in functional ability as measured by the Functional Activities Questionnaire and Clinical Dementia Rating. In addition, memory compensation (calendar) training and cognitive exercise appeared to have associations (moderate effect sizes) with better functional outcomes. Withholding SG or WE appeared to have little effect on functioning at 18 months.

Conclusions:

Overall, these results add to the growing literature that physical exercise can play a significant and lasting role in modifying outcomes in a host of medical conditions, including neurodegenerative diseases.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., … Phelps, C.H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7(3), 270279. doi: 10.1016/j.jalz.2011.03.008 CrossRefGoogle Scholar
Amofa, PA, DeFeis, B, De Wit, L, O’Shea, D, Mejia, A, Chandler, M, … Smith, G. (2019). Functional ability is associated with higher adherence to behavioral interventions in mild cognitive impairment. The Clinical Neuropsychologist, 119. doi: 10.1080/13854046.2019.1672792. [Epub ahead of print] PubMed PMID: 31608773.Google Scholar
Amofa, P.A., Locke, D., Chandler, M., Crook, J.E., Ball, C.T., Phatak, V., & Smith, G. (2021). Comparative effectiveness of behavioral interventions to prevent or delay dementia: one-year partner outcome. (Manuscript accepted for publication). Journal of Prevention of Alzheimer’s Disease, 1(8), 3340.Google Scholar
Baker, L.D., Beavers, D.P., Cleveland, M., Day, C.E., Decarli, C., Espeland, M.A., … Carrillo, M.C. (2019). O4–11–03: U.S. Pointer: study design and launch. Alzheimer’s & Dementia, 15(7S_Part_24), P1262P1263. doi: 10.1016/j.jalz.2019.06.4802 CrossRefGoogle Scholar
Barnes, D.E., Yaffe, K., Belfor, N., Jagust, W.J., DeCarli, C., Reed, B.R., & Kramer, J.H. (2009). Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer Disease and Associated Disorders, 23(3), 205210. doi: 10.1097/WAD.0b013e31819c6137 CrossRefGoogle ScholarPubMed
Barnes, DE & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet Neurology, 10(9), 819828. doi: 10.1016/S1474-4422(11)70072-2. Epub 2011 Jul 19. PMID: 21775213; PMCID: PMC3647614.CrossRefGoogle ScholarPubMed
Blumenthal, J.A., Smith, P.J., Mabe, S., Hinderliter, A., Lin, P.H., Liao, L., … Sherwood, A. (2019). Lifestyle and neurocognition in older adults with cognitive impairments: a randomized trial. Neurology, 92(3), e212e223. doi: 10.1212/WNL.0000000000006784 CrossRefGoogle ScholarPubMed
Chandler, M.J., Locke, D.E., Crook, J.E., Fields, J.A., Ball, C.T., Phatak, V.S., … Smith, G.E. (2019). Comparative effectiveness of behavioral interventions on quality of life for older adults with mild cognitive impairment: a randomized clinical trial. JAMA Network Open, 2(5), e193016. doi: 10.1001/jamanetworkopen.2019.3016 CrossRefGoogle ScholarPubMed
Chandler, M.J., Locke, D.E.C., Duncan, N.L., Hanna, S.M., Cuc, A.V., Fields, J.A., … Smith, G.E. (2017). Computer versus compensatory calendar training in individuals with mild cognitive impairment: functional impact in a pilot study. Brain Sciences, 7(9). doi: 10.3390/brainsci7090112 CrossRefGoogle ScholarPubMed
Chandler, M.J., Parks, A.C., Marsiske, M., Rotblatt, L.J., & Smith, G.E. (2016). Everyday impact of cognitive interventions in mild cognitive impairment: a systematic review and meta-analysis. Neuropsychology Review, 26(3), 225251. doi: 10.1007/s11065-016-9330-4 CrossRefGoogle ScholarPubMed
Collins, L.M., Dziak, J.J., Kugler, K.C., & Trail, J.B. (2014). Factorial experiments: efficient tools for evaluation of intervention components. American Journal of Preventive Medicine, 47(4), 498504. doi: 10.1016/j.amepre.2014.06.021 CrossRefGoogle ScholarPubMed
Farias, S.T., Mungas, D., Reed, B.R., Cahn-Weiner, D., Jagust, W., Baynes, K., & Decarli, C. (2008). The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology, 22(4), 531544. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18590364 CrossRefGoogle ScholarPubMed
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343353. doi: 10.1016/S1474-4422(04)00767-7 CrossRefGoogle ScholarPubMed
Greenaway, M.C., Duncan, N.L., & Smith, G.E. (2013). The memory support system for mild cognitive impairment: randomized trial of a cognitive rehabilitation intervention. International Journal of Geriatric Psychiatry, 28(4), 402409. doi: 10.1002/gps.3838 CrossRefGoogle ScholarPubMed
Locke, D.E., Greenaway, M.C., Duncan, N., Fields, J.A., Cuc, A.V., Snyder, C.H., … Smith, G.E. (2014). A patient-centered analysis of enrollment and retention in a randomized behavioral trial of two cognitive rehabilitation interventions for Mild Cognitive Impairment. The Journal of Prevention of Alzheimer’s Disease, 1(3), 143150. doi: 10.14283/jpad.2014.27 Google Scholar
Logsdon, R.G., Gibbons, L.E., McCurry, S.M., & Teri, L. (2002). Assessing quality of life in older adults with cognitive impairment. Psychosomatic Medicine, 64(3), 510519. doi: 10.1097/00006842-200205000-00016 CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 24122414. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8232972 CrossRefGoogle ScholarPubMed
Morris, M.C., Tangney, C.C., Wang, Y., Sacks, F.M., Bennett, D.A., & Aggarwal, N.T. (2015). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement, 11(9), 10071014. doi: 10.1016/j.jalz.2014.11.009 CrossRefGoogle ScholarPubMed
Ngandu, T., Lehtisalo, J., Solomon, A., Levalahti, E., Ahtiluoto, S., Antikainen, R., … Kivipelto, M. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet, 385(9984), 22552263. doi: 10.1016/S0140-6736(15)60461-5 CrossRefGoogle ScholarPubMed
Petersen, R., Smith, G., Waring, S., Ivnik, R., Tangalos, E., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303308.CrossRefGoogle ScholarPubMed
Petersen, R.C., Aisen, P., Boeve, B.F., Geda, Y.E., Ivnik, R.J., Knopman, D.S., … Jack, C.R. (2013). Mild cognitive impairment due to alzheimer disease in the community. Annals of Neurology, 74(2), 199208. doi: 10.1002/ana.23931 CrossRefGoogle Scholar
Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T., Ganguli, M., Gloss, D., … Rae-Grant, A. (2018). Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology, 90(3), 126135. doi: 10.1212/WNL.0000000000004826 CrossRefGoogle ScholarPubMed
Pfeffer, R.I., Kurosaki, T.T., Harrah, C.H. Jr, Chance, J.M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. J Gerontol, 37(3), 323329. doi: 10.1093/geronj/37.3.323 CrossRefGoogle Scholar
Radloff, L.S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385401.CrossRefGoogle Scholar
Sherman, D.S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The efficacy of cognitive intervention in Mild Cognitive Impairment (MCI): a meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27(4), 440484. doi: 10.1007/s11065-017-9363-3 CrossRefGoogle ScholarPubMed
Song, D., Yu, D., Li, P., & Lei, Y. (2018). The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: A systematic review and meta-analysis. International Journal of Nursing Studies, 79, 155164. doi: 10.1016/j.ijnurstu.2018.01.002 CrossRefGoogle ScholarPubMed
Smith, G., Chandler, M., Locke, D.E., Fields, J., Phatak, V., Crook, J., … Cochran, D. (2017). Behavioral interventions to prevent or delay dementia: protocol for a randomized comparative effectiveness study. JMIR Research Protocols, 6(11), e223. doi: 10.2196/resprot.8103 CrossRefGoogle ScholarPubMed
Smith, G., Petersen, R., Parisi, J., Ivnik, R., Kokmen, E., Tangalos, E., & Waring, S. (1996). Definition, course and outcome of mild cognitive impairment. Aging, Neuropsychology, and Cognition, 3, 141147.CrossRefGoogle Scholar
Smith, G.E. (2016). Healthy cognitive aging and dementia prevention. The American Psychologist, 71(4), 268275. doi: 10.1037/a0040250 CrossRefGoogle ScholarPubMed
Smith, G.E., Chandler, M., Fields, J.A., Aakre, J., & Locke, D.E.C. (2018). A survey of patient and partner outcome and treatment preferences in mild cognitive impairment. Journal of Alzheimer’s Disease, 63(4), 14591468. doi: 10.3233/JAD-171161 CrossRefGoogle ScholarPubMed
Smith, G.E., Housen, P., Yaffe, K., Ruff, R., Kennison, R.F., Mahncke, H.W., & Zelinski, E.M. (2009). A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594603. doi: 10.1111/j.1532-5415.2008.02167.x CrossRefGoogle ScholarPubMed
Sox, H.C. & Goodman, S.N. (2012). The methods of comparative effectiveness research. Annual Review of Public Health, 33, 425445. doi: 10.1146/annurev-publhealth-031811-124610 CrossRefGoogle ScholarPubMed
Supplementary material: File

Shandera-Ochsner et al. supplementary material

Shandera-Ochsner et al. supplementary material 1

Download Shandera-Ochsner et al. supplementary material(File)
File 18.3 KB
Supplementary material: PDF

Shandera-Ochsner et al. supplementary material

Shandera-Ochsner et al. supplementary material 2

Download Shandera-Ochsner et al. supplementary material(PDF)
PDF 13.5 KB