Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T22:34:53.567Z Has data issue: false hasContentIssue false

Cognitive Deficits Correlate with White Matter Deterioration in Spinocerebellar Ataxia Type 2

Published online by Cambridge University Press:  18 February 2016

Carlos R. Hernandez-Castillo
Affiliation:
Consejo Nacional de Ciencia y Tecnología - Cátedras - Instituto de Neuroetología, Universidad Veracruzana, México
Israel Vaca-Palomares
Affiliation:
Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
Víctor Galvez
Affiliation:
Posgrado en Neuroetologia, Universidad Veracruzana, México
Aurelio Campos-Romo
Affiliation:
Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suarez”, México
Rosalinda Diaz
Affiliation:
Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
Juan Fernandez-Ruiz*
Affiliation:
Laboratorio de Neuropsicología, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México Posgrado en Neuroetologia, Universidad Veracruzana, México Facultad de Psicología, Universidad Veracruzana, México
*
Correspondence and reprint requests to: Juan Fernandez-Ruiz, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Coyoacán, Distrito Federal, México 04510. E-mail: jfr@unam.mx

Abstract

Objectives: The aim of this study was to explore the relationship between cognitive and white matter deterioration in a group of participants with spinocerebellar ataxia type 2 (SCA2). Methods: Fourteen genetically confirmed participants with SCA2 and 14 aged-matched controls participated in the study. Diffusion tensor imaging tract-based spatial statistics were performed to analyze structural white matter integrity. Significant group differences in the mean diffusivity were correlated with SCA2 cognitive deficits. Results: Our analysis revealed higher mean diffusivity in the SCA2 group in cerebellar white matter, medial lemniscus, and middle cerebellar peduncle, among other regions. Cognitive scores correlated with white matter mean diffusivity in the parahippocampal area, inferior frontal and supramarginal gyri and the stria terminalis. Conclusions: Our findings show significant correlations between white matter microstructural damage in key areas affected in SCA2 and cognitive deficits. These findings result in a more comprehensive understanding of the effect of the neurodegenerative process in people with SCA2. (JINS, 2016, 22, 486–491)

Type
Brief Communication
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminoff, E.M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379390. doi:10.1016/j.tics.2013.06.009 CrossRefGoogle ScholarPubMed
Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170177. doi:10.1016/j.tics.2004.02.010 Google Scholar
Auburger, G.W. (2011). Spinocerebellar ataxia type 2. Handbook of Clinical Neurology, 103, 423436. doi:10.1016/B978-0-444-51892-7.00026-7 CrossRefGoogle Scholar
Cools, R., Clark, L., Owen, A.M., & Robbins, T.W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. The Journal of Neuroscience, 22(11), 45634567. doi:20026435 CrossRefGoogle ScholarPubMed
Fernandez-Ruiz, J., Velásquez-Perez, L., Díaz, R., Drucker-Colín, R., Pérez-González, R., Canales, N., & Auburger, G. (2007). Prism adaptation in spinocerebellar ataxia type 2. Neuropsychologia, 45(12), 26922698. doi:10.1016/j.neuropsychologia.2007.04.006 CrossRefGoogle ScholarPubMed
Guerrini, L., Lolli, F., Ginestroni, A., Belli, G., Della Nave, R., Tessa, C., & Mascalchi, M. (2004). Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain, 127(8), 17851795. doi:10.1093/brain/awh201 Google Scholar
Hernandez-Castillo, C.R., Galvez, V., Morgado-Valle, C., & Fernandez-Ruiz, J. (2014). Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI. Cerebellum & Ataxias, 1(1), 2. doi:10.1186/2053-8871-1-2 Google Scholar
Hernandez-Castillo, C.R., Galvez, V., Diaz, R., & Fernandez-Ruiz, J. (2015). Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging and Behavior. doi:10.1007/s11682-015-9389-1 Google Scholar
Hernandez-Castillo, C.R., Galvez, V., Mercadillo, R., Diaz, R., Yescas, P., Martinez, L., &Fernandez-Ruiz, J. (2015). Functional connectivity changes relates to motor and cognitive performance in SCA2. Movement Disorders, 2015. doi:10.1002/mds.26320 Google Scholar
Hernandez-Castillo, C.R., Galvez, V., Mercadillo, R., Diaz, R., Campos-Romo, A., & Fernandez-Ruiz, J. (2015). Extensive white matter alterations and its correlations with ataxia severity in SCA 2 patients. PLOS One. doi:10.1371/journal.pone.0135449 Google Scholar
Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., &Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1(1), 8084. doi:10.1038/283 CrossRefGoogle ScholarPubMed
Mascalchi, M., Toschi, N., Giannelli, M., Ginestroni, A., Della Nave, R., Nicolai, E., & Diciotti, S. (2015). Progression of microstructural damage in spinocerebellar ataxia type 2: A longitudinal DTI study. AJNR American Journal of Neuroradiology, 36, 10961101. doi:10.3174/ajnr.A4343 Google Scholar
McGaugh, J.L. (2002). Memory consolidation and the amygdala: A systems perspective. Trends in Neurosciences, 25(9), 456461.CrossRefGoogle ScholarPubMed
Mercadillo, R.E., Galvez, V., Díaz, R., Hernández-Castillo, C.R., Campos-Romo, A., Boll, M.C., & Fernandez-Ruiz, J. (2014). Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry. Journal of the Neurological Sciences, 347(1), 5058. doi:10.1016/j.jns.2014.09.018 Google Scholar
Pulst, S.M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.N., Lopes-Cendes, I., & Sahba, S. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics, 14(3), 269276. doi:10.1038/ng1196-269 Google Scholar
Reetz, K., Lencer, R., Hagenah, J.M., Gaser, C., Tadic, V., Walter, U., & Binkofski, F. (2010). Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. The Cerebellum, 9(2), 210217.Google Scholar
Rowe, J., Hughes, L., Eckstein, D., & Owen, A.M. (2008). Rule-selection and action-selection have a shared neuroanatomical basis in the human prefrontal and parietal cortex. Cerebral Cortex, 18(10), 22752285.Google Scholar
Sahakian, B.J., & Owen, A.M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85(7), 399.Google Scholar
Schmitz-Hübsch, T., Du Montcel, S.T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., & Klockgether, T. (2006). Scale for the assessment and rating of ataxia Development of a new clinical scale. Neurology, 66(11), 17171720.Google Scholar
Smith, S.M., Johansen-Berg, H., Jenkinson, M., Rueckert, D., Nichols, T.E., Miller, K.L., & Behrens, T.E. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nature Protocols, 2(3), 499503.CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289. doi:10.1006/nimg.2001.0978 CrossRefGoogle ScholarPubMed
Wakana, S., Jiang, H., Nagae-Poetscher, L.M., Van Zijl, P.C., & Mori, S. (2004). Fiber tract–based atlas of human white matter anatomy. Radiology, 230(1), 7787. doi:10.1148/radiol.2301021640 Google Scholar
Wang, P.S., Liu, R.S., Yang, B.H., & Soong, B.W. (2007). Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6. Journal of Neurology, 254(7), 838845.Google Scholar
Supplementary material: PDF

Hernandez-Castillo supplementary material S1

Supplementary Figure

Download Hernandez-Castillo supplementary material S1(PDF)
PDF 74.3 KB
Supplementary material: PDF

Hernandez-Castillo supplementary material S2

Supplementary Table

Download Hernandez-Castillo supplementary material S2(PDF)
PDF 33 KB