Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T05:02:20.578Z Has data issue: false hasContentIssue false

The Relation Between Personality and Biomarkers in Sensitivity and Conversion to Alzheimer-Type Dementia

Published online by Cambridge University Press:  11 December 2019

Janet M. Duchek*
Affiliation:
Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO63130, USA
Andrew J. Aschenbrenner
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, MO63110, USA The Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO63110, USA
Anne M. Fagan
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, MO63110, USA The Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO63110, USA
Tammie L.S. Benzinger
Affiliation:
The Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO63110, USA Department of Radiology, Washington University in St. Louis, St. Louis, MO63110, USA Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO63110, USA
John C. Morris
Affiliation:
Department of Neurology, Washington University in St. Louis, St. Louis, MO63110, USA The Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO63110, USA
David A. Balota
Affiliation:
Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO63130, USA
*
*Correspondence and reprint requests to: Janet Duchek, Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA. E-mail: jduchek@wustl.edu

Abstract

Objectives:

The present study explored relationships among personality, Alzheimer’s disease (AD) biomarkers, and dementia by addressing the following questions: (1) Does personality discriminate healthy aging and earliest detectable stage of AD? (2) Does personality predict conversion from healthy aging to early-stage AD? (3) Do AD biomarkers mediate any observed relationships between personality and dementia status/conversion?

Methods:

Both self- and informant ratings of personality were obtained in a large well-characterized longitudinal sample of cognitively normal older adults (N = 436) and individuals with early-stage dementia (N = 74). Biomarkers included amyloid imaging, hippocampal volume, cerebral spinal fluid (CSF) Aβ42, and CSF tau.

Results:

Higher neuroticism, lower conscientiousness, along with all four biomarkers strongly discriminated cognitively normal controls from early-stage AD individuals. The direct effects of neuroticism and conscientiousness were only mediated by hippocampal volume. Conscientiousness along with all biomarkers predicted conversion from healthy aging to early-stage AD; however, none of the biomarkers mediated the relationship between conscientiousness and conversion. Conscientiousness predicted conversion as strongly as the biomarkers, with the exception of hippocampal volume.

Conclusions:

Conscientiousness and to a lesser extent neuroticism serve as important independent behavioral markers for AD risk.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, K.B. & Kim, J.J. (2002). Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learning & Memory, 9, 5865.CrossRefGoogle ScholarPubMed
Balsis, S., Cooper, L.D., & Oltmanns, T.F. (2015). Are informant reports of personality more internally consistent than self-reports of personality? Assessment, 22(4), 399404.CrossRefGoogle ScholarPubMed
Bateman, R.J., Xiong, C., Benzinger, T.L.S., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, X., Blazey, T.M., Holtzman, D.M., Santacruz, A., Buckles, V., Oliver, A., Moulder, K., Aisen, P.M., Ghetti, B., Klunk, W.M., McDade, E., Martins, R.N., Masters, C.M., Mayeux, R., Ringman, J.M., Rossor, M.M., Schofield, P.M., Sperling, R.M., Salloway, S., & Morris, J.C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367(9), 795804. doi: 10.1056/NEJMoa1202753.CrossRefGoogle ScholarPubMed
Berg, L., McKeel, D.W., Miller, P.J., Storandt, M., Rubin, E.H., Morris, J.C., Baty, J, Coats, M., Norton, J., Goate, A.M., Price, J.L., Gearing, M., Mirra, S.S., & Saunders, A.M. (1998). Clinicopathologic studies in cognitively healthy aging and Alzheimer disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Archives of Neurology, 55, 326335.CrossRefGoogle ScholarPubMed
Bogg, T. & Roberts, B.W. (2004). Conscientiousness and health-related behaviors: a meta-analysis of the leading behavioral contributors to mortality. Psychological Bulletin, 130(6), 887919. doi: 10.1037/0033-2909.130.6.887.CrossRefGoogle ScholarPubMed
Bogg, T. & Roberts, B.W. (2013). The case for conscientiousness: evidence and implications for a personality trait marker of health and longevity. Annals of Behavioral Medicine, 45(3), 278288. doi: 10.1007/s12160-012-9454-6.CrossRefGoogle ScholarPubMed
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., & Snyder, A.Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23, 724738.CrossRefGoogle ScholarPubMed
Burke, W.J., Miller, J.P., Rubin, E.H., Morris, J.C., Coben, L.A., Duchek, J.M., Wittels, I.G., & Berg, L. (1988). Reliability of the Washington University Clinical Dementia Rating. Archives of Neurology, 45, 3132.CrossRefGoogle ScholarPubMed
Carr, D.B., Gray, S., Baty, J., & Morris, J.C. (2000). The value of informant versus individual’s complaints of memory impairment in early dementia. Neurology, 11, 17241726.CrossRefGoogle Scholar
Chapman, B.P., Roberts, B., & Duberstein, P. (2011). Personality and longevity: knowns, unknowns, and implications for public health and personalized medicine. Journal of Aging Research, 2011, 759170. doi: 10.4061/2011/759170.CrossRefGoogle ScholarPubMed
Costa, P.T., & McCrae, R.R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Professional Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Crowe, M., Andel, R., Pedersen, N.L., Fratiglioni, L., & Gatz, M. (2006). Personality and risk of cognitive impairment 25 years later. Psychology and Aging, 21(3), 573580. doi: 10.1037/0882-7974.21.3.573.CrossRefGoogle ScholarPubMed
Dar-Nimrod, I., Chapman, B.P., Franks, P., Robbins, J., Porsteinsson, A., Mapstone, M., & Duberstein, P.R. (2012). Personality factors moderate the associations between apolipoprotein genotype and cognitive function as well as late onset Alzheimer disease. The American Journal of Geriatric Psychiatry, 20(12), 10261035. doi: 10.1097/JGP.0b013e318267016b.CrossRefGoogle ScholarPubMed
Duberstein, P.R., Chapman, B.P., Tindle, H.A., Sink, K.M., Bamonti, P., Robbins, J., Jerant, A.F., & Franks, P. (2011). Personality and risk for Alzheimer’s disease in adults 72 years of age and older: a 6-year follow-up. Psychology and Aging, 26(2), 351362. doi: 10.1037/a0021377.CrossRefGoogle ScholarPubMed
Duchek, J.M., Balota, D.A., Storandt, M., & Larsen, R. (2007). The power of personality in discriminating between healthy aging and early-stage Alzheimer’s disease. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 62(6), P353P361. doi: 10.1093/geronb/62.6.P353.CrossRefGoogle ScholarPubMed
Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Hu, L., Morris, K.S., & Kramer, A.F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 10301039. doi: 10.1002/hipo.20547.CrossRefGoogle ScholarPubMed
Erickson, K.I, Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S., Heo, S., Alves, H., White, S.M., Wojcicki, T.R., Mailey, E., Vieira, V.J., Martin, S.A., Pence, B.D., Woods, J.A., McAuley, E., & Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. PNAS, 108, 30173022. doi: 10.1073/pnas. 1015950108.CrossRefGoogle ScholarPubMed
Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., & Holtzman, D.M. (2007). Cerebrospinal fluid tau/beta-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64, 343349. doi: 10.1001/archneur.64.3.noc60123.CrossRefGoogle Scholar
Fjell, A.M. & Walhovd, K.B. (2010). Structural brain changes in aging: courses, causes and cognitive consequences. Reviews in Neuroscience, 21(3), 187221.CrossRefGoogle ScholarPubMed
Friedman, H.S., Tucker, J.S., Tomlinson-Keasey, C., Schwartz, J.E., Wingard, D.L., & Criqui, M.H. (1993). Does childhood personality predict longevity? Journal of Personality and Social Psychology, 65, 176185.CrossRefGoogle ScholarPubMed
Gatchel, J.R., Donovan, N.J., Locascio, J.J., Schultz, A.P., Becker, A., Chhatwal, J., Papp, K.V., Amariglio, R.E., Rentz, D.M., Blacker, D., Sperling, R.A., Johnson, K.A., & Marshcal, G.A. (2017). Depressive symptoms and tau accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: a pilot study. Journal of Alzheimers Disease, 59(3), 975985. doi: 10.3233/JAD-170001.CrossRefGoogle ScholarPubMed
Hassenstab, J., Chasse, R., Grabow, P., Benzinger, T.L., Fagan, A.M., Xiong, C., Jasielec, M., Grant, E., & Morris, J.C. (2016). Certified normal: Alzheimer’s disease biomarkers and normative estimates of cognitive functioning. Neurobiol Aging, 43, 2333. doi: 10.1016/neurobiolaging.2016 03.014.CrossRefGoogle ScholarPubMed
Head, D., Rodrigue, K., Kennedy, K., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491507. 10.1037/0894-4105.22.4.491.CrossRefGoogle ScholarPubMed
Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S.Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., Lesnick, T.G., Pankratz, V.S., Donohue, M.C., & Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers, Lancet Neurology, 12, 207216.CrossRefGoogle ScholarPubMed
Jackson, J., Balota, D.A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32(12), 21622171. doi: 10.1016/j.neurobiolaging.2009.12.009.CrossRefGoogle ScholarPubMed
Kendler, K.S., Gatz, M., Gardner, C.O., & Pederse, N.L. (2006). Personality and major depression. Archives of General Psychiatry, 63(10), 11131120. doi: 10.1001/archpsyc.63.10.1113.CrossRefGoogle ScholarPubMed
Lodi-Smith, J., Jackson, J., Bogg, T., Walton, K., Wood, D., Harms, P., & Roberts, B.W. (2010). Mechanisms of health: education and health-related behaviours partially mediate the relationship between conscientiousness and self-reported physical health. Psychology & Health, 25(3), 305319. doi: 10.1080/08870440902736964.CrossRefGoogle ScholarPubMed
McEwen, B.S., & Magarinos, A.M. (2001). Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders. Human Psychopharmacology: Clinical and Experimental, 16(Suppl 1), S7S19. doi: 10.1002/hup.266.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939944.CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43, 24122414.CrossRefGoogle ScholarPubMed
Oehlert, G.W. (1992). A note on the delta method. American Statistician, 46(1), 2729. doi: 10.1080/00031305.1992.10475842.Google Scholar
Price, J.L, Davis, P.B, Morris, J.C., & White, D.L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12(4), 295312.CrossRefGoogle ScholarPubMed
Price, J.L., McKeel, D.W., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., Hansen, L.A., Petersen, R.C., Parisi, J.E., Dickson, D.W., Smith, C.D., Davis, D.G., Schmitt, F.A., Markesbery, W.R., Kaye, J., Kurlan, R., Hulette, C.Kurland, B.F., Higdon, R., Kukull, W., & Morris, J.C. (2009). Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30(7), 10261036. doi: 10.1016/j.neurobiolaging.2009.04.002.CrossRefGoogle ScholarPubMed
Rankin, K.P., Baldwin, E., Pace-Savitsky, C., Kramer, J.H., & Miller, B.L. (2005). Self awareness and personality change in dementia. Journal of Neurology, Neurosurgery, & Psychiatry, 76, 632639.CrossRefGoogle ScholarPubMed
Rhodes, R.E. & Smith, N.E.I. (2006). Personality correlates of physical activity: a review and meta-analysis. British Journal of Sports Medicine, 40, 958965. doi: 10.1136/bjsm 2006.028860.CrossRefGoogle ScholarPubMed
Schultz, S.A., Gordon, B.A., Mishra, S., Su, Y., Morris, J.C., Ances, B.M., Duchek, J.M., Balota, D.A., & Benzinger, T.L.S. (2019). Association between personality and tau-PET binding in cognitively normal older adults. Brain Imaging & Behavior. doi: 10.1007/s11682-019-00163-y.CrossRefGoogle ScholarPubMed
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280292CrossRefGoogle ScholarPubMed
Squire, L.R. (1987). The organization and neural substrates of human memory. International Journal of Neurology, 21–22, 1822.Google ScholarPubMed
Storandt, M., Grant, E.A., Miller, J.P., & Morris, J.C. (2006). Longitudinal course and neuro-pathologic outcomes in original vs revised MCI and in pre-MCI. Neurology, 67(3), 467473.CrossRefGoogle Scholar
Su, Y., D’Angelo, G.M., Vlassenko, A.G., Zhou, G., Snyder, A.Z., Marcus, D., Blazey, T., Christensen, J.J., Vora, S., Morris, J.C., Mintun, M., & Benzinger, T.L. (2013). Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS One, 8, e73377.CrossRefGoogle ScholarPubMed
Tautvydaitė, D., Antonietti, J.P., Henry, H., von Gunten, A., & Popp, J. (2017). Relations between personality changes and cerebrospinal fluid biomarkers of Alzheimer’s disease pathology. Journal of Psychiatric Research, 90, 1220. doi: 10.1016/j.jpsychires.2016.12.024.CrossRefGoogle ScholarPubMed
Terracciano, A., An, Y., Sutin, A.R., Thambisetty, M., & Resnick, S.M. (2017). Personality change in the preclinical phase of Alzheimer disease. JAMA Psychiatry, 74(12), 12591265. doi: 10.1001/jamapsychiatry.2017.2816.CrossRefGoogle ScholarPubMed
Terracciano, A., Iacono, D., O’Brien, R.J., Troncoso, J.C., An, Y., Sutin, A.R., Ferrucci, L., Zonderman, A.B., & Resnick, S.M. (2013). Personality and resilience to Alzheimer’s disease neuropathology: a prospective autopsy study. Neurobiology of Aging, 34(4), 10451050. doi: 10.1016/j.neurobiolaging.2012.08.008.CrossRefGoogle ScholarPubMed
Terracciano, A. & Sutin, A.R. (2019). Personality and Alzheimer’s disease: an integrative review. Personal Disord, 10 (1), 412.CrossRefGoogle Scholar
Terracciano, A., Sutin, A.R., An, Y., O’Brien, R.J., Ferrucci, L., Zonderman, A.B., & Resnick, S.M. (2014). Personality and risk of Alzheimer’s disease: new data and meta-analysis. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10(2), 179186. doi: 10.1016/j.jalz.2013.03.002.CrossRefGoogle ScholarPubMed
Wilson, R.S., Begeny, C.T., Boyle, P.A., Schneider, J.A., & Bennett, D.A. (2011). Vulnerability to stress, anxiety, and development of dementia in old age. American Journal of Geriatric Psychiatry, 19(4), 327334.CrossRefGoogle ScholarPubMed
Wilson, R.S., Bennett, D.A, Mendes de Leon, C.F., Bienias, J.L.Morris, M.C., & Evans, D.A. (2005). Distress proneness and cognitive decline in a population of older persons. Psychneuroendocrinology, 30, 1117.CrossRefGoogle Scholar
Wilson, R.S., de Leon, C.M., Bienias, J.L., Evans, D.A., & Bennett, D.A. (2004). Personality and mortality in old age. The Journals of Gerontology: Series B: Psychological Sciences And Social Sciences, 59(3), P110P116. doi: 10.1093/geronb/59.3.P110.CrossRefGoogle ScholarPubMed
Wilson, R.S., Evans, D.A., Bienias, J.L., Mendes de Leon, C.F., Schneider, J.A., & Bennett, D.A. (2003). Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology, 61, 14791485.CrossRefGoogle ScholarPubMed
Wilson, R.S., Schneider, J.A., Arnold, S.E., Bienias, J.L., & Bennett, D.A. (2007). Conscientiousness and the incidence of Alzheimer disease and mild cognitive impairment. Archives of General Psychiatry, 64(10), 12041212.CrossRefGoogle ScholarPubMed
Xiong, C., Roe, C.M., Buckles, V., Fagan, A., Holtzman, D., Balota, D.A., Duchek, J.M., Storandt, M., Mintun, M.A., Grant, E., Snyder, A.Z., Head, D., Benzinger, T.L.S., Mettenburg, J.M., Csernansky, J.G., & Morris, J.C. (2011). Role of family history for Alzheimer biomarker abnormalities in the Adult Children Study. Archives of Neurology, 68, 13131319.CrossRefGoogle ScholarPubMed
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M.B., & Leirer, V.O. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research 17, 3749.CrossRefGoogle Scholar
Yves, R. (2012). Lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48, 136.Google Scholar
Zobel, A., Barkow, K., Schulze-Rauschenbach, S., von Widdern, O., Metten, M., Pfeiffer, U., Schnell, S., Wagner, M., & Maier, W. (2004). High neuroticism and depressive temperament are associated with dysfunctional regulation of the hypothalamic-pituitary-adrenocortical system in healthy volunteers. Acta Psychiatrica Scandinavica, 109, 92399.CrossRefGoogle ScholarPubMed
Supplementary material: File

Duchek et al. supplementary materials

Tables S1-S3

Download Duchek et al. supplementary materials(File)
File 22.4 KB