Skip to main content Accessibility help
Hostname: page-component-7f7b94f6bd-lv2sk Total loading time: 0.278 Render date: 2022-06-28T16:16:09.432Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

NIH EXAMINER: Conceptualization and Development of an Executive Function Battery

Published online by Cambridge University Press:  08 October 2013

Joel H. Kramer*
Department of Neurology, University of California, San Francisco, California
Dan Mungas
Department of Neurology, University of California, Davis, California
Katherine L. Possin
Department of Neurology, University of California, San Francisco, California
Katherine P. Rankin
Department of Neurology, University of California, San Francisco, California
Adam L. Boxer
Department of Neurology, University of California, San Francisco, California
Howard J. Rosen
Department of Neurology, University of California, San Francisco, California
Alan Bostrom
Department of Neurology, University of California, San Francisco, California
Lena Sinha
Department of Neurology, University of California, San Francisco, California
Ashley Berhel
Department of Neurology, University of California, San Francisco, California
Mary Widmeyer
Rosalind Franklin University of Medicine and Science, Chicago, Illinois
Correspondence and reprint requests to: Joel H. Kramer, 675 Nelson Rising Lane, Suite 190, MC 1207, San Francisco, CA 94158. E-mail:


Executive functioning is widely targeted when human cognition is assessed, but there is little consensus on how it should be operationalized and measured. Recognizing the difficulties associated with establishing standard operational definitions of executive functioning, the National Institute of Neurological Disorders and Stroke entered into a contract with the University of California-San Francisco to develop psychometrically robust executive measurement tools that would be accepted by the neurology clinical trials and clinical research communities. This effort, entitled Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER), resulted in a series of tasks targeting working memory, inhibition, set shifting, fluency, insight, planning, social cognition and behavior. We describe battery conceptualization and development, data collection, scale construction based on item response theory, and lay the foundation for studying the battery's utility and validity for specific assessment and research goals. (JINS, 2013, 19, 1–9)

Special Series
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Amieva, H., Phillips, L., Della Sala, S. (2003). Behavioral dysexecutive symptoms in normal aging. Brain and Cognition, 53(2), 129132.CrossRefGoogle ScholarPubMed
Arnett, P.A., Rao, S.M., Grafman, J., Bernardin, L., Luchetta, T., Binder, J.R., Lobeck, L. (1997). Executive functions in multiple sclerosis: An analysis of temporal ordering, semantic encoding, and planning abilities. Neuropsychology, 11(4), 535544.CrossRefGoogle Scholar
Aron, A.R., Watkins, L., Sahakian, B.J., Monsell, S., Barker, R.A., Robbins, T.W. (2003). Task-set switching deficits in early-stage Huntington's disease: Implications for basal ganglia function. Journal of Cognitive Neuroscience, 15(5), 629642.CrossRefGoogle Scholar
Asimakopulos, J., Boychuck, Z., Sondergaard, D., Poulin, V., Menard, I., Korner-Bitensky, N. (2012). Assessing executive function in relation to fitness to drive: a review of tools and their ability to predict safe driving. Australian Occupational Therapy Journal, 59(6), 402427. doi:10.1111/j.1440-1630.2011.00963 CrossRefGoogle Scholar
Barkley, R.A. (2010). Differential diagnosis of adults with ADHD: The role of executive function and self-regulation. Journal of Clinical Psychiatry, 71(7), e17. doi:10.4088/JCP.9066tx1c CrossRefGoogle Scholar
Boone, K.B., Miller, B.L., Lee, A., Berman, N., Sherman, D., Stuss, D.T. (1999). Neuropsychological patterns in right versus left frontotemporal dementia. Journal of International Neuropsychological Society, 5(7), 616622.CrossRefGoogle ScholarPubMed
Buckner, R.L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195208.CrossRefGoogle Scholar
Caeyenberghs, K., Leemans, A., Leunissen, I., Gooijers, J., Michiels, K., Sunaert, S., Swinnen, S.P. (2012). Altered structural networks and executive deficits in traumatic brain injury patients. Brain Structure and Function. doi:10.1007/s00429-012-0494-2 Google ScholarPubMed
Cahn-Weiner, D.A., Boyle, P.A., Malloy, P.F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Applied Neuropsychology, 9(3), 187191.CrossRefGoogle ScholarPubMed
Cambridge-Cognition. (1996). CANTAB® . Cambridge: Cambridge Cognition Limited.Google Scholar
Case, R., Kurland, M.D., Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386404.CrossRefGoogle Scholar
Chiaravalloti, N.D., DeLuca, J. (2003). Assessing the behavioral consequences of multiple sclerosis: An application of the Frontal Systems Behavior Scale (FrSBe). Cognitive and Behavioral Neurology, 16(1), 5467.CrossRefGoogle Scholar
Conway, A.R., Kane, M.J., Bunting, M.F., Hambrick, D.Z., Wilhelm, O., Engle, R.W. (2005). Working memory span tasks: A methodological review and user's guide. Psychonomic Bulletin Review, 12(5), 769786.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., Kramer, J.H. (2001). Delis-Kaplan Executive Function System. San Antonio: The Psychological Corporation.Google ScholarPubMed
Flores, J., Ostrosky, F., Lozano, A. (2008). Batería Neuropsicológica de Funciones Ejecutivas y Lóbulos Frontales (Battery of Executive Functions and Frontal Lobe, Spanish) San Antonio: Pearson, Inc.Google Scholar
Foong, J., Rozewicz, L., Quaghebeur, G., Davie, C.A., Kartsounis, L.D., Thompson, A.J., Ron, M.A. (1997). Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain, 120(Pt 1), 1526.CrossRefGoogle ScholarPubMed
Gerstenecker, A., Mast, B., Duff, K., Ferman, T.J., Litvan, I. (2013). Executive dysfunction is the primary cognitive impairment in progressive supranuclear palsy. Archives of Clinical Neuropsychology, 28(2), 104113. doi:10.1093/arclin/acs098 CrossRefGoogle ScholarPubMed
Gioia, G.A., Isquith, P.K., Guy, S.C., Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6(3), 235238. doi:10.1093/arclin/acs098 CrossRefGoogle Scholar
Griffin, S.L., Mindt, M.R., Rankin, E.J., Ritchie, A.J., Scott, J.G. (2002). Estimating premorbid intelligence: Comparison of traditional and contemporary methods across the intelligence continuum. Archives of Clinical Neuropsychology, 17(5), 497507. doi:S0887617701001366 [pii] CrossRefGoogle ScholarPubMed
Hambleton, R.K., Swaminathan, H., Rogers, H.J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage.Google Scholar
Hellmuth, J., Mirsky, J., Heuer, H.W., Matlin, A., Jafari, A., Garbutt, S., Boxer, A.L. (2012). Multicenter validation of a bedside antisaccade task as a measure of executive function. Neurology, 78(23), 18241831. doi:10.1212/WNL.0b013e318258f785 CrossRefGoogle ScholarPubMed
Hutchinson, A.D., Mathias, J.L. (2007). Neuropsychological deficits in frontotemporal dementia and Alzheimer's disease: A meta-analytic review. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 917928. doi:10.1136/jnnp.2006.100669 CrossRefGoogle Scholar
Kramer, J.H., Jurik, J., Sha, S.J., Rankin, K.P., Rosen, H.J., Johnson, J.K., Miller, B.L. (2003). Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cognitive and Behavioral Neurology, 16(4), 211218.CrossRefGoogle ScholarPubMed
Kray, J., Lindenberger, U. (2000). Adult age differences in task switching. Psychology of Aging, 15(1), 126147.CrossRefGoogle ScholarPubMed
Krueger, C.E., Bird, A.C., Growdon, M.E., Jang, J.Y., Miller, B.L., Kramer, J.H. (2009). Conflict monitoring in early frontotemporal dementia. Neurology, 73(5), 349355. doi:10.1212/WNL.0b013e3181b04b24 CrossRefGoogle Scholar
Krueger, C.E., Rosen, H.J., Taylor, H.G., Espy, K.A., Schatz, J., Rey-Casserly, C., Kramer, J.H. (2011). Know thyself: Real-world behavioral correlates of self-appraisal accuracy. Clinical Neuropsychologist, 25(5), 741756. doi:10.1080/13854046.2011.569759 CrossRefGoogle ScholarPubMed
Levin, H.S., Hanten, G. (2005). Executive functions after traumatic brain injury in children. Pediatric Neurology, 33(2), 7993.CrossRefGoogle ScholarPubMed
Lezak, M.D. (2004). Neuropsychological assessment (4th ed.). New York, NY, USA.Google ScholarPubMed
Luks, T.L., Oliveira, M., Possin, K.L., Bird, A., Miller, B.L., Weiner, M.W., Kramer, J.H. (2010). Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia, 48(1), 165170. doi:10.1016/j.neuropsychologia.2009.09.001 CrossRefGoogle Scholar
Malloy, P., Grace, J. (2005). A review of rating scales for measuring behavior change due to frontal systems damage. Cognitive and Behavioral Neurology, 18(1), 1827.CrossRefGoogle Scholar
Mirsky, J.B., Heuer, H.W., Jafari, A., Kramer, J.H., Schenk, A.K., Viskontas, I.V., Boxer, A.L. (2011). Anti-saccade performance predicts executive function and brain structure in normal elders. Cognitive and Behavioral Neurology, 24(2), 5058. doi:10.1097/WNN.0b013e318223f6c6 CrossRefGoogle Scholar
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle Scholar
Monsell, S. (2003). Task switching. Trends in Cognitive Science, 7(3), 134140. doi:S1364661303000287 [pii] CrossRefGoogle Scholar
Moorhouse, P., Song, X., Rockwood, K., Black, S., Kertesz, A., Gauthier, S., Feldman, H. (2010). Executive dysfunction in vascular cognitive impairment in the consortium to investigate vascular impairment of cognition study. Journal of Neurological Science, 288(1-2), 142146. doi:10.1016/j.jns.2009.09.017 CrossRefGoogle Scholar
Mungas, D., Reed, B.R., Kramer, J.H. (2003). Psychometrically matched measures of global cognition, memory, and executive function for assessment of cognitive decline in older persons. Neuropsychology, 17(3), 380392.CrossRefGoogle Scholar
Munoz, D.P., Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews: Neuroscience, 5(3), 218228.CrossRefGoogle ScholarPubMed
Owen, A.M., McMillan, K.M., Laird, A.R., Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 4659. doi:10.1002/hbm.20131 CrossRefGoogle ScholarPubMed
Paulsen, J.S. (2011). Cognitive impairment in Huntington disease: Diagnosis and treatment. Current Neurology and Neuroscience Reports, 11(5), 474483. doi:10.1007/s11910-011-0215-x CrossRefGoogle Scholar
Peters, M., Giesbrecht, T., Jelicic, M., Merckelbach, H. (2007). The random number generation task: Psychometric properties and normative data of an executive function task in a mixed sample. Journal of International Neuropsychological Society, 13(4), 626634. doi:S1355617707070786 CrossRefGoogle Scholar
Possin, K.L., Feigenbaum, D., Rankin, K.P., Smith, G.E., Boxer, A.L., Wood, K., Kramer, J.H. (2013). Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology, 80(24), 21802185.CrossRefGoogle Scholar
Psychology Software Tools, I. (2009). E-Prime 2. Sharpsburg, PA.Google Scholar
Ravizza, S.M., Ciranni, M.A. (2002). Contributions of the prefrontal cortex and basal ganglia to set shifting. Journal of Cognitive Neuroscience, 14(3), 472483.CrossRefGoogle Scholar
Reed, B.R., Eberling, J.L., Mungas, D., Weiner, M., Kramer, J.H., Jagust, W.J. (2004). Effects of white matter lesions and lacunes on cortical function. Archives of Neurology, 61(10), 15451550.CrossRefGoogle Scholar
Reitan, R.M., Wolfson, D. (1985). The Halstead–Reitan Neuropsychological Test Battery. Tucson: Neuropsychology Press.Google Scholar
Schenk, A., Berhel, A., Verde, S., Widmeyer, M., Kramer, J.H. (2008). Assessing the mental rigidity of FTD patients using a random number generation task [Abstract]. Journal of the International Neuropsychological Society, 14(S1), 266.Google Scholar
Shallice, T., Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in men. Brain, 114, 727741.CrossRefGoogle Scholar
Shany-Ur, T., Rankin, K.P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550555.CrossRefGoogle ScholarPubMed
Slachevsky, A., Villalpando, J.M., Sarazin, M., Hahn-Barma, V., Pillon, B., Dubois, B. (2004). Frontal assessment battery and differential diagnosis of frontotemporal dementia and Alzheimer disease. Archives of Neurology, 61(7), 11041107.CrossRefGoogle ScholarPubMed
Stuss, D.T. (2011). Traumatic brain injury: Relation to executive dysfunction and the frontal lobes. Current Opinion in Neurology, 24(6), 584589. doi:10.1097/WCO.0b013e32834c7eb9 CrossRefGoogle Scholar
Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39(8), 771786.CrossRefGoogle Scholar
Weintraub, S., Dikmen, S.S., Heaton, R.K., Tulsky, D.S., Zelazo, P.D., Bauer, P.J., Gershon, R.C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80(11 Suppl. 3), S54S64. doi:10.1212/WNL.0b013e3182872ded CrossRefGoogle Scholar
Wilson, B., Alderman, N., Burgess, P.W., Emslie, H., Evans, J.J. (1996). Behavioural Assessment of the Dysexecutive Syndrome. Bury St. Edmunds: Thames Valley Test Company.Google Scholar
Supplementary material: File

Kramer Supplementary Material

Supplementary Materials

Download Kramer Supplementary Material(File)
File 30 KB
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NIH EXAMINER: Conceptualization and Development of an Executive Function Battery
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

NIH EXAMINER: Conceptualization and Development of an Executive Function Battery
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

NIH EXAMINER: Conceptualization and Development of an Executive Function Battery
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *