Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-95llv Total loading time: 0.499 Render date: 2021-05-10T20:29:01.837Z Has data issue: true Feature Flags: {}

Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew

Published online by Cambridge University Press:  07 December 2016

Daniel A. Nation
Affiliation:
Department of Psychology, University of Southern California, Los Angeles, California
Mark W. Bondi
Affiliation:
Veterans Affairs San Diego Healthcare System, San Diego, California Department of Psychiatry, University of California at San Diego, La Jolla, California
Ellis Gayles
Affiliation:
United States Navy, Marine Corps Air Station Miramar, San Diego, California
Dean C. Delis
Affiliation:
Department of Psychiatry, University of California at San Diego, La Jolla, California
Corresponding
E-mail address:

Abstract

Objectives: Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. Methods: In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Results: Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Conclusions: Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Asmaro, D., Mayall, J., & Ferguson, S. (2013). Cognition at altitude: Impairment in executive and memory processes under hypoxic conditions. Aviation, Space, and Environmental Medicine, 84(11), 11591165.CrossRefGoogle ScholarPubMed
Australian Transport Safety Bureau. (2014). MH370 - Definition of underwater search areas. Retrieved from https://www.atsb.gov.au/newsroom/news-items/2015/mh370-definition-of-underwater-search-areas.aspx.Google Scholar
Cable, G.G. (2003). In-flight hypoxia incidents in military aircraft: Causes and implications for training. Aviation, Space, and Environmental Medicine, 74(2), 169172.Google ScholarPubMed
Cavaletti, G., Moroni, R., Garavaglia, P., & Tredici, G. (1987). Brain damage after high-altitude climbs without oxygen. Lancet, 1(8524), 101.CrossRefGoogle Scholar
Crow, T.J., & Kelman, G.R. (1971). Effect of mild acute hypoxia on human short-term memory. British Journal of Anaesthesia, 43(6), 548552.CrossRefGoogle Scholar
Crow, T.J., & Kelman, G.R. (1973). Psychological effects of mild acute hypoxia. British Journal of Anaesthesia, 45(4), 335337.CrossRefGoogle Scholar
Denison, D.M., Ledwith, F., & Poulton, E.C. (1966). Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. Aerospace Medicine, 37(10), 10101013.Google Scholar
Fowler, B., Paul, M., Porlier, G., Elcombe, D.D., & Taylor, M. (1985). A re-evaluation of the minimum altitude at which hypoxic performance decrements can be detected. Ergonomics, 28(5), 781791. doi: 10.1080/00140138508963198 CrossRefGoogle Scholar
Frisby, J.P., Barrett, R.F., & Thornton, J.A. (1973). Effect of mild acute hypoxia on a decision-making task. Aerospace Medicine, 44(5), 523526.Google ScholarPubMed
Gold, R.E., & Kulak, L.L. (1972). Effect of hypoxia on aircraft pilot performance. Aerospace Medicine, 43(2), 180183.Google ScholarPubMed
Gozal, D., Daniel, J.M., & Dohanich, G.P. (2001). Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. Journal of Neuroscience, 21(7), 24422450.Google ScholarPubMed
Green, R.G., & Morgan, D.R. (1985). The effects of mild hypoxia on a logical reasoning task. Aviation, Space, and Environmental Medicine, 56(10), 10041008.Google ScholarPubMed
Island, R., & Fraley, E. (1993). Analysis of USAF hypoxia incidents January 1976 through March 1990. Paper presented at the Proceedings of the 31st Annual SAFE Symposium, Creswell, OR.Google Scholar
Kalaria, R., Ferrer, I., & Love, S. (2015). Vascular disease, hypoxia and related conditions. In S. Love, A. Perry, J. Ironside, & H. Budka (Eds.), Greenfield’s neuropathology (9th ed.). New York: CRC Press.Google Scholar
Kelman, G.R., & Crow, T.J. (1969). Impairment of mental performance at a simulated altitude of 8,000 feet. Aerospace Medicine, 40(9), 981982.Google Scholar
Kida, M., & Imai, A. (1993). Cognitive performance and event-related brain potentials under simulated high altitudes. Journal of Applied Physiology, 74(4), 17351741.Google Scholar
Kramer, A.F., Coyne, J.T., & Strayer, D.L. (1993). Cognitive function at high altitude. Human Factors, 35(2), 329344.CrossRefGoogle Scholar
Malle, C., Quinette, P., Laisney, M., Bourrilhon, C., Boissin, J., Desgranges, B., & Pierard, C. (2013). Working memory impairment in pilots exposed to acute hypobaric hypoxia. Aviation, Space, and Environmental Medicine, 84(8), 773779.CrossRefGoogle Scholar
McCarthy, D., Corban, R., Legg, S., & Faris, J. (1995). Effects of mild hypoxia on perceptual-motor performance: A signal-detection approach. Ergonomics, 38(10), 19791992.Google ScholarPubMed
Newman, D.G. (2000). Runaway plane. Flight Safety Australia, March–April: 42–44.Google Scholar
Paul, M.A., & Fraser, W.D. (1994). Performance during mild acute hypoxia. Aviation, Space, and Environmental Medicine, 65(10 Pt 1), 891899.Google ScholarPubMed
Pavlicek, V., Schirlo, C., Nebel, A., Regard, M., Koller, E.A., & Brugger, P. (2005). Cognitive and emotional processing at high altitude. Aviation, Space, and Environmental Medicine, 76(1), 2833.Google ScholarPubMed
Petrassi, F.A., Hodkinson, P.D., Walters, P.L., & Gaydos, S.J. (2012). Hypoxic hypoxia at moderate altitudes: Review of the state of the science. Aviation, Space, and Environmental Medicine, 83(10), 975984.CrossRefGoogle ScholarPubMed
Turner, C.E., Barker-Collo, S.L., Connell, C.J., & Gant, N. (2015). Acute hypoxic gas breathing severely impairs cognition and task learning in humans. Physiology and Behavior, 142, 104110. doi: 10.1016/j.physbeh.2015.02.006 CrossRefGoogle ScholarPubMed
Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277(5324), 376380.CrossRefGoogle ScholarPubMed
Virues-Ortega, J., Buela-Casal, G., Garrido, E., & Alcazar, B. (2004). Neuropsychological functioning associated with high-altitude exposure. Neuropsychology Review, 14(4), 197224.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *