Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T14:36:15.943Z Has data issue: false hasContentIssue false

Is the Weigl Colour-Form Sorting Test Specific to Frontal Lobe Damage?

Published online by Cambridge University Press:  10 August 2020

Joseph Mole*
Affiliation:
Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK Institute of Neurology, University College London, London, UK
Charlotte Dore
Affiliation:
Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
Tianbo Xu
Affiliation:
Institute of Neurology, University College London, London, UK
Tim Shallice
Affiliation:
Institute of Cognitive Neuroscience, University College London, London, UK International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
Edgar Chan
Affiliation:
Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK Institute of Neurology, University College London, London, UK
Lisa Cipolotti
Affiliation:
Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK Institute of Neurology, University College London, London, UK
*
*Correspondence and reprint requests to: Joseph Mole, Neuropsychology Department, National Hospital for Neurology and Neurosurgery, 2nd floor, 33 Queen Square, Queen Mary Wing, London WC1N 3BG, UK. E-mail: joe.mole@nhs.net

Abstract

Objective:

The Weigl Colour-Form Sorting Test is a brief, widely used test of executive function. So far, it is unknown whether this test is specific to frontal lobe damage. Our aim was to investigate Weigl performance in patients with focal, unilateral, left or right, frontal, or non-frontal lesions.

Method:

We retrospectively analysed data from patients with focal, unilateral, left or right, frontal (n = 37), or non-frontal (n = 46) lesions who had completed the Weigl. Pass/failure (two correct solutions/less than two correct solutions) and errors were analysed.

Results:

A greater proportion of frontal patients failed the Weigl than non-frontal patients, which was highly significant (p < 0.001). In patients who failed the test, a significantly greater proportion of frontal patients provided the same solution twice. No significant differences in Weigl performance were found between patients with left versus right hemisphere lesions or left versus right frontal lesions. There was no significant correlation between performance on the Weigl and tests tapping fluid intelligence.

Conclusions:

The Weigl is specific to frontal lobe lesions and not underpinned by fluid intelligence. Both pass/failure on this test and error types are informative. Hence, the Weigl is suitable for assessing frontal lobe dysfunction.

Type
Brief Communication
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baird, A., Papadopoulou, K., Greenwood, R., & Cipolotti, L. (2005). Memory function after resolution of post-traumatic amnesia. Brain Injury, 19, 811817. doi: 10.1080/02699050500149213 CrossRefGoogle ScholarPubMed
Berg, E.A. (1948). A simple objective technique for measuring flexibility in thinking. The Journal of General Psychology, 39(1), 1522. doi: 10.1080/00221309.1948.9918159 CrossRefGoogle ScholarPubMed
Byrne-Davis, L., Bucks, R., & Cuerden, J. (1998). Validation of a new scoring system for the Weigl Color Form Sorting Test in a memory disorders clinic sample. Journal of Clinical and Experimental Neuropsychology, 20, 286292. doi: 10.1076/jcen.20.2.286.1176 CrossRefGoogle Scholar
Chan, E., Altendorff, S., Healy, C., Werring, D.J., & Cipolotti, L. (2017). The test accuracy of the Montreal Cognitive Assessment (MoCA) by stroke lateralisation. Journal of the Neurological Sciences, 373, 100104. doi: 10.1016/j.jns.2016.12.028 CrossRefGoogle ScholarPubMed
Chiu, W.Z., Papma, J.M., de Koning, I., Donker Kaat, L., Seelaar, H., Reijs, A.E.M., … van Swieten, J.C. (2012). Midcingulate involvement in progressive supranuclear palsy and tau positive frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry, 83(9), 910915. doi: 10.1136/jnnp-2011-302035 CrossRefGoogle ScholarPubMed
Cipolotti, L., Healy, C., Chan, E., Bolsover, F., Lecce, F., White, M., … Bozzali, M. (2015). The impact of different aetiologies on the cognitive performance of frontal patients. Neuropsychologia, 68, 2130. doi: 10.1016/j.neuropsychologia.2014.12.025 CrossRefGoogle ScholarPubMed
Cipolotti, L., MacPherson, S.E., Gharooni, S., van-Harskamp, N., Shallice, T., Chan, E., & Nachev, P. (2018). Cognitive estimation: performance of patients with focal frontal and posterior lesions. Neuropsychologia, 115, 7077. doi: 10.1016/j.neuropsychologia.2017.08.017 CrossRefGoogle ScholarPubMed
Cipolotti, L., Molenberghs, P., Dominguez, J., Smith, N., Smirni, D., Xu, T., … Chan, E. (2020). Fluency and rule breaking behaviour in the frontal cortex. Neuropsychologia, 137, 107308. doi: 10.1016/j.neuropsychologia.2019.107308 CrossRefGoogle ScholarPubMed
Cipolotti, L., Spanò, B., Healy, C., Tudor-Sfetea, C., Chan, E., White, M., … Bozzali, M. (2016). Inhibition processes are dissociable and lateralized in human prefrontal cortex. Neuropsychologia, 93, 112. doi: 10.1016/j.neuropsychologia.2016.09.018 CrossRefGoogle ScholarPubMed
Court, J.H., & Raven, J. (1995). Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 7: Research and references: Summaries of normative, reliability, and validity studies and references to all sections. Oxford: Oxford University Press.Google Scholar
Crawford, J.R., & Parker, D.M. (1992). A Handbook Of Neuropsychological Assessment. Sussex: Lawrence Erlbaum Associates Ltd.Google Scholar
De Luca, R., Maggio, M.G., Maresca, G., Latella, D., Cannavò, A., Sciarrone, F., … Calabrò, R.S. (2019). Improving cognitive function after traumatic brain injury: a clinical trial on the potential use of the semi-immersive virtual reality. Behavioural Neurology, 2019, 9268179. doi: 10.1155/2019/9268179 CrossRefGoogle ScholarPubMed
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820829. doi: 10.1038/35097575 CrossRefGoogle ScholarPubMed
Gregoire, S.M., Scheffler, G., Jäger, H.R., Yousry, T.A., Brown, M.B., Kallis, C., … Werring, D.J. (2013). Strictly lobar microbleeds are associated with executive impairment in patients with ischemic stroke or transient ischemic attack. Stroke, 44(5), 12671272. doi: 10.1161/STROKEAHA.111.000245 CrossRefGoogle ScholarPubMed
Hobson, P., Meara, J., & Taylor, C. (2007). The Weigl colour-form sorting test: a quick and easily administered bedside screen for dementia and executive dysfunction. International Journal of Geriatric Psychiatry, 22(9), 909915. doi: 10.1002/gps.1765 CrossRefGoogle ScholarPubMed
Kaufman, A.S., & Lichtenberger, E.O. (1999). Essentials of WAIS-III Assessment. Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
Leeds, L., Meara, R.J., Woods, R., & Hobson, J. (2001). A comparison of the new executive functioning domains of the CAMCOG-R with existing tests of executive function in elderly stroke survivors. Age and Ageing, 30(3), 251254. doi: 10.1093/ageing/30.3.251 CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological Assessment (5th ed.). Oxford: Oxford University Press.Google Scholar
MacPherson, S.E., Allerhand, M., Gharooni, S., Smirni, D., Shallice, T., Chan, E., & Cipolotti, L. (2020). Cognitive reserve proxies do not differentially account for cognitive performance in patients with focal frontal and non-frontal lesions. Journal of the International Neuropsychological Society, 110. doi: 10.1017/S1355617720000326 Google Scholar
MacPherson, S.E., Della Sala, S., Cox, S.R., Girardi, A., & Iveson, M.H. (2015). Handbook Of Frontal Lobe Assessment. Oxford: Oxford University Press.CrossRefGoogle Scholar
McFie, J., & Piercy, M.F. (1952). The relation of laterality of lesion to performance on Weigl’s sorting test. Journal of Mental Science, 98(411), 299305. doi: 10.1192/bjp.98.411.299 CrossRefGoogle ScholarPubMed
McKenna, P., & Warrington, E. (1980). The Graded Naming Test. Windsor: NFER-Nelson.Google Scholar
Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202. doi: 10.1146/annurev.neuro.24.1.167 CrossRefGoogle ScholarPubMed
Murphy, P., Shallice, T., Robinson, G., MacPherson, S.E., Turner, M., Woollett, K., … Cipolotti, L. (2013). Impairments in proverb interpretation following focal frontal lobe lesions. Neuropsychologia, 51(11), 20752086. doi: 10.1016/j.neuropsychologia.2013.06.029 CrossRefGoogle ScholarPubMed
Nelson, H.E. (1982). National Adult Reading Test. Windsor: NFER-Nelson.Google Scholar
Raven, J.C. (1976). Manual for the Advanced Progressive Matrices: Set 1. Oxford: Oxford Psychologists Press.Google Scholar
Robinson, G., Shallice, T., Bozzali, M., & Cipolotti, L. (2012). The differing roles of the frontal cortex in fluency tests. Brain, 135(Pt. 7), 22022214. doi: 10.1093/brain/aws142 CrossRefGoogle ScholarPubMed
Roca, M., Parr, A., Thompson, R., Woolgar, A., Torralva, T., Antoun, N., … Duncan, J. (2010). Executive function and fluid intelligence after frontal lobe lesions. Brain, 113, 234247.CrossRefGoogle Scholar
Shallice, T., & Cipolotti, L. (2018). The prefrontal cortex and neurological impairments of active thought. Annual Review of Psychology, 69, 157180. doi: 10.1146/annurev-psych-010416-044123 CrossRefGoogle ScholarPubMed
Spreen, O., Sherman, E.M.S., & Strauss, E. (2006). A Compendium Of Neuropsychological Tests: Administration, Norms, And Commentary (3rd ed.). Oxford: Oxford University Press.Google Scholar
Spreen, O., & Strauss, E.A. (1998). A Compendium Of Neuropsychological Tests: Administration, Norms, And Commentary. New York: Oxford University Press.Google Scholar
Stuss, D.T., & Alexander, M.P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London B, 362(1481), 901915. doi: 10.1098/rstb.2007.2096 CrossRefGoogle Scholar
Tamkin, A.S. (1980). The weigl color-form sorting test as an index of cortical function. Journal of Clinical Psychology, 36(3), 778781. doi: 10.1002/1097-4679(198007)36:3<778:Aid-jclp2270360333>3.0.Co;2-6 3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Tamkin, A.S., & Dolenz, J.J. (1991). Some correlates of the Weigl Color-Form Sorting Test in alcoholics. Journal of Clinical Psychology, 47(1), 170174. doi: 10.1002/1097-4679(199101)47:1<170:Aid-jclp2270470126>3.0.Co;2-9 3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Tamkin, A.S., & Kunce, J.T. (1982). Construct validity of the Weigl color-form sorting test. Perceptual and Motor Skills, 55(1), 105106. doi: 10.2466/pms.1982.55.1.105 CrossRefGoogle ScholarPubMed
Tamkin, A.S., Kunce, J.T., Blount, J.B. Jr., & Magharious, W. (1984). The effectiveness of the Weigl color-form sorting test in screening for brain dysfunction. Journal of Clinical Psychology, 40(6), 14541459. doi: 10.1002/1097-4679(198411)40:6<1454:aid-jclp2270400632>3.0.co;2-l 3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Tian, J., Bucks, R.S., Haworth, J., & Wilcock, G. (2003). Neuropsychological prediction of conversion to dementia from questionable dementia: statistically significant but not yet clinically useful. Journal of Neurology, Neurosurgery & Psychiatry, 74(4), 433438. doi: 10.1136/jnnp.74.4.433 CrossRefGoogle Scholar
Warrington, E.K. (1996). The Camden Memory Tests. Hove, United Kingdom: Psychology Press.Google Scholar
Warrington, E.K., & James, M. (1991). The Visual Object And Space Perception Battery. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Wechsler, D. (1997). WAIS-III Administration And Scoring Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Weigl, E. (1927). Zur Psychologie sogenannter Abstrakionsprozesse. Zeitschrift für Psychologie, 103, 245.Google Scholar
Woods, B., & Clare, L. (2008). Handbook Of The Clinical Psychology Of Ageing (2nd ed.). Oxford: John Wiley & Sons Ltd.CrossRefGoogle Scholar
Woolgar, A., Parr, A., Cusack, R., Thompson, R., Nimmo-Smith, I., Torralva, T., … Duncan, J. (2010). Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proceedings of the National Academy of Sciences, 107(33), 14899. doi: 10.1073/pnas.1007928107 CrossRefGoogle ScholarPubMed
Supplementary material: File

Mole et al. supplementary material

Table S1

Download Mole et al. supplementary material(File)
File 17.6 KB