Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-xbgml Total loading time: 0.403 Render date: 2022-08-12T22:27:58.727Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia

Published online by Cambridge University Press:  27 July 2012

Katherine L. Possin*
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Serana K. Chester
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Victor Laluz
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Alan Bostrom
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Howard J. Rosen
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Bruce L. Miller
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
Joel H. Kramer
Affiliation:
Department of Neurology, University of California, San Francisco, San Francisco, California
*
Correspondence and reprint requests to: Katherine L. Possin, UCSF Memory and Aging Center, Box 1207, San Francisco, CA 94143-1207. E-mail: kpossin@memory.ucsf.edu

Abstract

On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1–11)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

APA. (1994). Diagnostic and statistical manual of mental disorders – (DSM-IV) (Vol. 4). Washington, DC: American Psychiatric Association.Google Scholar
Baldo, J.V., Shimamura, A.P., Delis, D.C., Kramer, J., Kaplan, E. (2001). Verbal and design fluency in patients with frontal lobe lesions. Journal of the International Neuropsychological Society, 7(5), 586596.CrossRefGoogle ScholarPubMed
Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55(1), 3040.CrossRefGoogle ScholarPubMed
Brooks, B.L., Weaver, L.E., Scialfa, C.T. (2006). Does impaired executive functioning differentially impact verbal memory measures in older adults with suspected dementia? Archives of Clinical Neuropsychology, 20(2), 230242.CrossRefGoogle ScholarPubMed
Carey, C.L., Woods, S.P., Damon, J., Halabi, C., Dean, D., Delis, D.C., Kramer, J.H. (2008). Discriminant validity and neuroanatomical correlates of rule monitoring in frontotemporal dementia and Alzheimer's disease. Neuropsychologia, 46(4), 10811087.CrossRefGoogle ScholarPubMed
Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., Kramer, J. (2001). The Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Kiliany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980.CrossRefGoogle ScholarPubMed
D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 362(1481), 761772.CrossRefGoogle ScholarPubMed
Elfgren, C.I., Risberg, J. (1998). Lateralized frontal blood flow increases during fluency tasks: Influence of cognitive strategy. Neuropsychologia, 36(6), 505512.CrossRefGoogle ScholarPubMed
Fischl, B., Liu, A., Dale, A.M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 7080.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Dale, A.M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355.CrossRefGoogle ScholarPubMed
Foldi, N.S., Helm-Estabrooks, N., Redfield, J., Nickel, D.G. (2010). Perseveration in normal aging: A comparison of perseveration rates on design fluency and verbal generative tasks. Aging, Neuropsychology, and Cognition, 10(4), 268280.CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Giovagnoli, A.R., Erbetta, A., Reati, F., Bugiani, O. (2008). Differential neuropsychological patterns of frontal variant frontotemporal dementia and Alzheimer's disease in a study of diagnostic concordance. Neuropsychologia, 46(5), 14951504.CrossRefGoogle Scholar
Goldberg, E. (1986). Varieties of perseveration: A comparison of two taxonomies. Journal of Clinical and Experimental Neuropsychology, 8(6), 710726.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Heflin, L.H., Laluz, V., Jang, J.Y., Ketelle, R., Miller, B.L., Kramer, J.H. (2011). Let's inhibit our excitement: The relationships between Stroop, behavioral disinhibition, and the frontal lobes. Neuropsychology, 25, 655665.CrossRefGoogle ScholarPubMed
Heimer, L., Van Hoesen, G.W. (2006). The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior. Neuroscience and Biobehavioral Reviews, 30(2), 126147.CrossRefGoogle ScholarPubMed
Hodges, J.R., Patterson, K., Ward, R., Garrard, P., Bak, T., Perry, R., Gregory, C. (1999). The differentiation of semantic dementia and frontal lobe dementia (temporal and frontal variants of frontotemporal dementia) from early Alzheimer's disease: A comparative neuropsychological study. Neuropsychology, 13(1), 3140.CrossRefGoogle ScholarPubMed
Hotz, G., Helm-Estabrooks, N. (1995). Perseveration. Part II: A study of perseveration in closed-head injury. Brain Inj, 9(2), 161172.CrossRefGoogle ScholarPubMed
Hutchinson, A.D., Mathias, J.L. (2007). Neuropsychological deficits in frontotemporal dementia and Alzheimer's disease: A meta-analytic review. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 917928.CrossRefGoogle ScholarPubMed
Jenner, C., Reali, G., Puopolo, M., Silveri, M.C. (2006). Can cognitive and behavioural disorders differentiate frontal variant-frontotemporal dementia from Alzheimer's disease at early stages? Behavioural Neurology, 17(2), 8995.CrossRefGoogle ScholarPubMed
Josephs, K.A. (2008). Frontotemporal dementia and related disorders: Deciphering the enigma. Annals of Neurology, 64(1), 414.CrossRefGoogle ScholarPubMed
Kaplan, E. (1988). A process approach to neuropsychological assessment. In Clinical neuropsychology and brain function: Research, measurement, and practice. Washington, DC: American Psychological Association.Google Scholar
Kramer, J.H., Jurik, J., Sha, S.J., Rankin, K.P., Rosen, H.J., Johnson, J.K., Miller, B.L. (2003). Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cognitive and Behavioral Neurology, 16(4), 211218.CrossRefGoogle ScholarPubMed
Kramer, J.H., Quitania, L., Dean, D., Neuhaus, J., Rosen, H.J., Halabi, C., Millwe, B.L. (2007). Magnetic resonance imaging correlates of set shifting. Journal of the International Neuropsychological Society, 13(3), 386392.CrossRefGoogle ScholarPubMed
Kringelbach, M.L., Rolls, E.T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341372.CrossRefGoogle ScholarPubMed
Lamar, M., Podell, K., Carew, T.G., Cloud, B.S., Resh, R., Kennedy, C., Libon, D.J. (1997). Perseverative behavior in Alzheimer's disease and subcortical ischemic vascular dementia. Neuropsychology, 11(4), 523534.CrossRefGoogle ScholarPubMed
Lee, S.E., Rabinovici, G.D., Mayo, M.C., Wilson, S.M., Seeley, W.W., Dearmond, S.J., Miller, B.L. (2011). Clinicopathological correlations in corticobasal degeneration. Annals of Neurology, 70(2), 327340.CrossRefGoogle ScholarPubMed
Levy, M.L., Miller, B.L., Cummings, J.L., Fairbanks, L.A., Craig, A. (1996). Alzheimer disease and frontotemporal dementias. Behavioral distinctions. Archives of Neurology, 53(7), 687690.CrossRefGoogle ScholarPubMed
Libon, D.J., Xie, S.X., Moore, P., Farmer, J., Antani, S., McCawley, G., Grossman, M. (2007). Patterns of neuropsychological impairment in frontotemporal dementia. Neurology, 68(5), 369375.CrossRefGoogle ScholarPubMed
Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Zee, D.S. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop. Neurology, 47(1), 19.CrossRefGoogle Scholar
Liu, X., Powell, D.K., Wang, H., Gold, B.T., Corbly, C.R., Joseph, J.E. (2007). Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. The Journal of Neuroscience, 27(17), 45874597.CrossRefGoogle ScholarPubMed
Luria, A.R. (1965). Two kinds of motor perseveration in massive injury of the frontal lobes. Brain, 88, 110.CrossRefGoogle ScholarPubMed
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125(Pt 3), 624639.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939944.CrossRefGoogle ScholarPubMed
Muller, N.G., Knight, R.T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 5158.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., Benson, D.F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 15461554.CrossRefGoogle ScholarPubMed
Nyhus, E., Barcelo, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and Cognition, 71(3), 437451.CrossRefGoogle ScholarPubMed
O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J., Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95102.CrossRefGoogle ScholarPubMed
Pa, J., Boxer, A., Chao, L.L., Gazzaley, A., Freeman, K., Kramer, J., Johnson, J.K. (2009). Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Annals of Neurology, 65(4), 414423.CrossRefGoogle ScholarPubMed
Pa, J., Possin, K.L., Wilson, S.M., Quintania, L.C., Kramer, J.H., Boxer, A.L., Johnson, J.K. (2010). Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. Journal of the International Neuropsychological Society, 16, 640650.CrossRefGoogle ScholarPubMed
Perry, R.J., Graham, A., Williams, G., Rosen, H., Erzinclioglu, S., Weiner, M., Hodges, J. (2006). Patterns of frontal lobe atrophy in frontotemporal dementia: A volumetric MRI study. Dementia and Geriatric Cognitive Disorders, 22(4), 278287.CrossRefGoogle ScholarPubMed
Porter, J.N., Collins, P.F., Muetzel, R.L., Lim, K.O., Luciana, M. (2011). Associations between cortical thickness and verbal fluency in childhood, adolescence, and young adulthood. Neuroimage, 55(4), 18651877.CrossRefGoogle ScholarPubMed
Possin, K.L., Brambati, S.M., Rosen, H.J., Johnson, J.K., Pa, J., Weiner, M.W., Kramer, J.H. (2009). Rule violation errors are associated with right lateral prefrontal cortex atrophy in neurodegenerative disease. Journal of the International Neuropsychological Society, 15(3), 354364.CrossRefGoogle ScholarPubMed
Possin, K.L., Filoteo, J.V., Roesch, S.C., Zizak, V., Rilling, L.M., Davis, J.D. (2005). Is a perseveration a perseveration? An evaluation of cognitive error types in patients with subcortical pathology. Journal of Clinical and Experimental Neuropsychology, 27(8), 953966.CrossRefGoogle ScholarPubMed
Rankin, K.P., Kramer, J.H., Miller, B.L. (2005). Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cognitive and Behavioral Neurology, 18(1), 2836.CrossRefGoogle ScholarPubMed
Rankin, K.P., Santos-Modesitt, W., Kramer, J.H., Pavlic, D., Beckman, V., Miller, B.L. (2008). Spontaneous social behaviors discriminate behavioral dementias from psychiatric disorders and other dementias. Journal of Clinical Psychiatry, 69(1), 6073.CrossRefGoogle ScholarPubMed
Rascovsky, K., Hodges, J.R., Kipps, C.M., Johnson, J.K., Seeley, W.W., Mendez, M.F., Miller, B.L. (2007). Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): Current limitations and future directions. Alzheimer Disease and Associated Disorders, 21(4), S14S18.CrossRefGoogle ScholarPubMed
Rascovsky, K., Salmon, D.P., Ho, G.J., Galasko, D., Peavy, G.M., Hansen, L.A., Thal, L.J. (2002). Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology, 58(12), 18011808.CrossRefGoogle ScholarPubMed
Robbins, T.W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 351(1346), 14631470; discussion 1470–1471.CrossRefGoogle ScholarPubMed
Salmon, E., Perani, D., Collette, F., Feyers, D., Kalbe, E., Holthoff, V., Herholz, K. (2008). A comparison of unawareness in frontotemporal dementia and Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 79(2), 176179.CrossRefGoogle ScholarPubMed
Sandson, J., Albert, M.L. (1984). Varieties of perseveration. Neuropsychologia, 22(6), 715732.CrossRefGoogle ScholarPubMed
Schmahmann, J.D., Pandya, D.N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44(8), 10371066.CrossRefGoogle ScholarPubMed
Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L., Gorno-Tempini, M.L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249255.CrossRefGoogle ScholarPubMed
Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. Neuroimage, 22(3), 10601075.CrossRefGoogle ScholarPubMed
Stuss, D.T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759765.CrossRefGoogle ScholarPubMed
Thompson, J.C., Stopford, C.L., Snowden, J.S., Neary, D. (2005). Qualitative neuropsychological performance characteristics in frontotemporal dementia and Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(7), 920927.CrossRefGoogle ScholarPubMed
Viskontas, I.V., Possin, K.L., Miller, B.L. (2007). Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Annals of the New York Academy of Sciences, 1121, 528545.CrossRefGoogle ScholarPubMed
Wager, T.D., Smith, E.E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, and Behavioral Neuroscience, 3(4), 255274.CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Petersen, R.C. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240246.CrossRefGoogle Scholar
Wittenberg, D., Possin, K.L., Rascovsky, K., Rankin, K.P., Miller, B.L., Kramer, J.H. (2008). The early neuropsychological and behavioral characteristics of frontotemporal dementia. Neuropsychology Review, 18(1), 91102.CrossRefGoogle ScholarPubMed
Woolley, J.D., Khan, B.K., Murthy, N.K., Miller, B.L., Rankin, K.P. (2011). The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: Rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. Journal of Clinical Psychiatry, 72(2), 126133.CrossRefGoogle ScholarPubMed
Yeterian, E.H., Pandya, D.N. (1991). Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. The Journal of Comparative Neurology, 312(1), 4367.CrossRefGoogle ScholarPubMed
29
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Frontal-Anatomic Specificity of Design Fluency Repetitions and Their Diagnostic Relevance for Behavioral Variant Frontotemporal Dementia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *