Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-30T08:14:39.273Z Has data issue: false hasContentIssue false

Cognitive Reserve Capacity: Exploring and Validating a Theoretical Model in Healthy Ageing

Published online by Cambridge University Press:  07 May 2019

Lisa McGarrigle*
School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University (DCU), Dublin, Ireland Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
Kate Irving
School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University (DCU), Dublin, Ireland
Martin P.J. van Boxtel
Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
Lorraine Boran
School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University (DCU), Dublin, Ireland
*Correspondence and reprint requests to: Lisa McGarrigle, Dalhousie University, Veterans’ Memorial Building, Suite 1314, 5955 Veterans’ Memorial Lane, Halifax, Nova Scotia, B3H 2E1, Canada. E-mail:


Objective: Cognitive reserve (CR) capacity can be viewed as the maximum processing potential of neural systems that support adaptive cognitive performance in age-related cognitive decline. CR is a complex construct that can only be measured indirectly. Proxy measures (e.g., psychosocial/lifestyle variables) are traditionally used to reflect CR. However, strong relationships have been observed between these measures and cognitive functions (e.g., executive function [EF], processing resources [PR], fluid/crystallized abilities); therefore, the organizational structure of indicators implicated in CR remains unclear. The objective of this study was to test a hypothetical, theoretical model of CR capacity that includes both traditional CR proxy indicators and measures of cognitive function [Satz et al. (2011). Journal of Clinical and Experimental Neuropsychology, 33(1), 121–130], which remain, as yet, untested. Method: Construct validity of the model was investigated in healthy older adults through exploratory and confirmatory factor analysis (EFA and CFA) using data from the Maastricht Ageing Study (MAAS). A secondary CFA was conducted to validate the model using data from the Irish Longitudinal Study on Ageing (TILDA). Results: EFA and CFA in MAAS established a two-factor model comprising EF/PR and cumulative cognitive enrichment (CCE), which was further validated in a secondary analysis in TILDA. Convergent and discriminant validity was supported in MAAS (range of R2 = .228–.635; factor correlation confidence interval (CI) = .622, .740) and TILDA (range of R2 = .172–.899; factor correlation CI = .559, .624). Conclusions: A dual model of CR elucidated the relationships between hypothesized indicators of CR capacity and revealed a two-factor structure suggesting that both control (EF/PR) and representational processes (CCE) are involved in CR capacity.

Regular Research
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Anderson, J.C. & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411423. doi: 10.1037/0033-2909.103.3.411 CrossRefGoogle Scholar
Arenaza-Urquijo, E.M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., … Chételat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage, 83, 450457. doi: 10.1016/j.neuroimage.2013.06.053 CrossRefGoogle ScholarPubMed
Baltes, P.B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23(5), 611628. doi: 10.1037/0012-1649.23.5.611 CrossRefGoogle Scholar
Baltes, P.B. (1993). The aging mind: potential and limits. The Gerontologist, 33(5), 580594.CrossRefGoogle ScholarPubMed
Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42(5), 815824. doi: 10.1016/j.paid.2006.09.018 CrossRefGoogle Scholar
Barrett, A., Burke, H., Cronin, H., Hickey, A., Kamiya, Y., Kenny, R.A., … Whelan, B. (2011). Fifty plus in Ireland 2011: First results from the Irish Longitudinal Study on Ageing (TILDA) (pp. 1322). Trinity College Dublin. Retrieved from Google Scholar
Bennett, D.A., Schneider, J.A., Tang, Y., Arnold, S.E., & Wilson, R.S. (2006). The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: A longitudinal cohort study. The Lancet Neurology, 5(5), 406412. doi: 10.1016/S1474-4422(06)70417-3 CrossRefGoogle ScholarPubMed
Bennett, D.A., Schneider, J.A., Wilson, R.S., Bienias, J.L., & Arnold, S.E. (2005). Education modifies the association of amyloid but not tangles with cognitive function. Neurology, 65(6), 953955. doi: 10.1212/01.wnl.0000176286.17192.69 CrossRefGoogle Scholar
Bentler, P.M. & Bonett, D.G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588. doi: 10.1037/0033-2909.88.3.588 CrossRefGoogle Scholar
Boyle, P.A., Wilson, R.S., Schneider, J.A., Bienias, J.L., & Bennett, D.A. (2008). Processing resources reduce the effect of Alzheimer pathology on other cognitive systems. Neurology, 70(17), 15341542. doi: 10.1212/01.wnl.0000304345.14212.38 CrossRefGoogle ScholarPubMed
Brand, N. & Jolles, J. (1985). Learning and retrieval rate of words presented auditorily and visually. The Journal of General Psychology, 112(2), 201210. doi: 10.1080/00221309.1985.9711004 CrossRefGoogle ScholarPubMed
Brown, T. (2006). Confirmatory Factor Analysis for Applied Research. New York, NY: Guilford Press.Google Scholar
Browne, M.W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K.A. &Long, J.S. (Eds.), Testing structural equation models (pp. 136162). Beverly Hills, CA: SAGE Publications Ltd.Google Scholar
Bryan, J. & Luszcz, M.A. (2000). Measurement of executive function: Considerations for detecting adult age differences. Journal of Clinical and Experimental Neuropsychology, 22(1), 4055. doi: 10.1076/1380-3395(200002)22:1;1-8;FT040 CrossRefGoogle ScholarPubMed
Buitenweg, J.I.V., Murre, J.M.J., & Ridderinkhof, K.R. (2012). Brain training in progress: A review of trainability in healthy seniors. Frontiers in Human Neuroscience, 6(183), 111. doi: 10.3389/fnhum.2012.00183 CrossRefGoogle ScholarPubMed
Craik, F.I.M. & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131138. doi: 10.1016/j.tics.2006.01.007 CrossRefGoogle ScholarPubMed
Crawford, J.R., Stewart, L.E., Cochrane, R.H.B., Foulds, J.A., Besson, J.A.O., & Parker, D.M. (1989). Estimating premorbid IQ from demographic variables: Regression equations derived from a UK sample. British Journal of Clinical Psychology, 28(3), 275278. doi: 10.1111/j.2044-8260.1989.tb01377.x CrossRefGoogle ScholarPubMed
Cronin, H., O’Regan, C., Finucane, C., Kearney, P., & Kenny, R.A. (2013). Health and aging: development of the Irish Longitudinal Study on Ageing health assessment. Journal of the American Geriatrics Society, 61(s2), S269S278. doi: 10.1111/jgs.12197 CrossRefGoogle ScholarPubMed
Deary, I.J., Whiteman, M.C., Starr, J.M., Whalley, L.J., & Fox, H.C. (2004). The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86(1), 130147.CrossRefGoogle ScholarPubMed
D’Elia, L.F. (1996). Color Trails Test. Odessa, FL: Psychological Assessment Resources.Google Scholar
Directoraat-Generaal voor de arbeidsvoorziening. (1989). Handleiding voor de functie-analyse [Manual for Job Analysis]. Den Haag, NL: SDU Uitgeverij.Google Scholar
Hancock, G.R. & Mueller, R.O. (2013). Structural Equation Modeling: A Second Course (2nd ed.). Charlotte, NC: Information Age Publishing.Google Scholar
Hill, N.T.M., Mowszowski, L., Naismith, S.L., Chadwick, V.L., Valenzuela, M., & Lampit, A. (2016). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329340. doi: 10.1176/appi.ajp.2016.16030360 CrossRefGoogle ScholarPubMed
Jolles, J., Houx, P., Van Boxtel, M.P.J., & Ponds, R.W.H.M. (1995). The Maastricht Aging Study: Determinants of Cognitive Aging. Maastricht, NL: Neuropsych Publishers.Google Scholar
Jones, R.N., Manly, J., Glymour, M.M., Rentz, D.M., Jefferson, A.L., & Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17(4), 593601. doi: 10.1017/S1355617710001748 CrossRefGoogle ScholarPubMed
Kane, M.J. & Engle, R.W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637671.CrossRefGoogle Scholar
Kaufman, A.S., Kaufman, J.C., Liu, X., & Johnson, C.K. (2009). How do educational attainment and gender relate to fluid intelligence, crystallized intelligence, and academic skills at ages 22–90 years? Archives of Clinical Neuropsychology, 24(2), 153163. doi: 10.1093/arclin/acp015 CrossRefGoogle ScholarPubMed
Kaufman, A.S., & Lichtenberger, E.O. (2006). Assessing Adolescent and Adult Intelligence (3rd ed.). New York, NY: John Wiley and Sons, Incorporated.Google Scholar
Kearney, P.M., Cronin, H., O’Regan, C., Kamiya, Y., Savva, G.M., Whelan, B., & Kenny, R. (2011). Cohort profile: The Irish longitudinal study on ageing. International Journal of Epidemiology, 40(4), 877884. doi: 10.1093/ije/dyr116 CrossRefGoogle ScholarPubMed
Kelly, M.E., Loughrey, D., Lawlor, B.A., Robertson, I.H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15, 2843. doi: 10.1016/j.arr.2014.02.004 CrossRefGoogle ScholarPubMed
Kenny, D.A. (2011). SEM: Identification. Retrieved July 11, 2016, from Google Scholar
Kenny, D.A. (2015). Measuring model fit. Retrieved April 27, 2018, from Google Scholar
Kotovsky, K., Hayes, J.R., & Simon, H.A. (1985). Why are some problems hard? Evidence from Tower of Hanoi. Cognitive Psychology, 17(2), 248294. doi: 10.1016/0010-0285(85)90009-X CrossRefGoogle Scholar
Kyllonen, P.C. & Christal, R.E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389433. doi: 10.1016/S0160-2896(05)80012-1 CrossRefGoogle Scholar
Lezak, M.D., Loring, D.W., & Howieson, D.B. (2004). Neuropsychological Assessment (4th ed.). Oxford, UK: Oxford University Press.Google Scholar
Lojo-Seoane, C., Facal, D., Guàrdia-Olmos, J., & Juncos-Rabadán, O. (2014). Structural model for estimating the influence of cognitive reserve on cognitive performance in adults with subjective memory complaints. Archives of Clinical Neuropsychology, 29(3), 245255. doi: 10.1093/arclin/acu007 CrossRefGoogle ScholarPubMed
Luteijn, F. & Van der Ploeg, F. (1983). Handleiding Groninger Intelligentietest (GIT) [Manual Groningen Intelligence Test]. Lisse, NL: Swets and Zeitlinger.Google Scholar
Matsunaga, M. (2010). How to factor-analyze your data right: Do’s, don’ts, and how-to’s. International Journal of Psychological Research, 3(1), 97110. Retrieved from CrossRefGoogle Scholar
Metsemakers, J.F., Höppener, P., Knottnerus, J.A., Kocken, R.J., & Limonard, C.B. (1992). Computerized health information in The Netherlands: A registration network of family practices. The British Journal of General Practice, 42(356), 102106.Google ScholarPubMed
Mitchell, M.B., Shaughnessy, L.W., Shirk, S.D., Yang, F.M., & Atri, A. (2012). Neuropsychological test performance and cognitive reserve in healthy aging and the Alzheimer’s disease spectrum: A theoretically-driven factor analysis. Journal of the International Neuropsychological Society : JINS, 18(6), 10711080. doi: 10.1017/S1355617712000859 CrossRefGoogle ScholarPubMed
Muthén, L.K. & Muthén, B.O. (2011). Mplus (Version 7.3). Los Angeles, CA: Muthén & Muthén.Google Scholar
Pett, M.A., Lackey, N.R., & Sullivan, J.J. (2003). Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Potter, G.G., Helms, M.J., & Plassman, B.L. (2008). Associations of job demands and intelligence with cognitive performance among men in late life. Neurology, 70(19 Part 2), 18031808. doi: 10.1212/01.wnl.0000295506.58497.7e CrossRefGoogle ScholarPubMed
Reed, B.R., Dowling, M., Farias, S.T., Sonnen, J., Strauss, M., Schneider, J.A., … Mungas, D. (2011). Cognitive activities during adulthood are more important than education in building reserve. Journal of the International Neuropsychological Society, 17(4), 615624. doi: 10.1017/S1355617711000014 CrossRefGoogle ScholarPubMed
Reijnders, J., Van Heugten, C., & Van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Research Reviews, 12(1), 263275. doi: 10.1016/j.arr.2012.07.003 CrossRefGoogle ScholarPubMed
Robertson, I.H., Manly, T., Andrade, J., Baddeley, B.T., & Yiend, J. (1997). Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747758. doi: 10.1016/S0028-3932(97)00015-8 CrossRefGoogle Scholar
Salthouse, T.A. (2000). Aging and measures of processing speed. Biological Psychology, 54(1), 3554. doi: 10.1016/S0301-0511(00)00052-1 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2003). Interrelations of aging, knowledge, and cognitive performance. In Staudinger, U.M. &Lindenberger, U.E.R. (Eds.), Understanding human development: Dialogues with lifespan psychology (pp. 265287). New York, NY: Springer.CrossRefGoogle Scholar
Salthouse, T.A. (2006). Mental exercise and mental aging evaluating the validity of the “use it or lose it” hypothesis. Perspectives on Psychological Science, 1(1), 6887. doi: 10.1111/j.1745-6916.2006.00005.x CrossRefGoogle ScholarPubMed
Salthouse, T.A., Berish, D.E., & Siedlecki, K.L. (2004). Construct validity and age sensitivity of prospective memory. Memory & Cognition, 32(7), 11331148. doi: 10.3758/BF03196887 CrossRefGoogle ScholarPubMed
Salthouse, T.A. & Davis, H.P. (2006). Organization of cognitive abilities and neuropsychological variables across the lifespan. Developmental Review, 26(1), 3154. doi: 10.1016/j.dr.2005.09.001 CrossRefGoogle Scholar
Sattler, C., Toro, P., Schönknecht, P., & Schröder, J. (2012). Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Research, 196(1), 9095. doi: 10.1016/j.psychres.2011.11.012 CrossRefGoogle ScholarPubMed
Satz, P., Cole, M.A., Hardy, D.J., & Rassovsky, Y. (2011). Brain and cognitive reserve: Mediator(s) and construct validity, a critique. Journal of Clinical and Experimental Neuropsychology, 33(1), 121130. doi: 10.1080/13803395.2010.493151 CrossRefGoogle ScholarPubMed
Scarmeas, N., Zarahn, E., Anderson, K.E., Hilton, J., Flynn, J., Van Heertum, R.L., … Stern, Y. (2003). Cognitive reserve modulates functional brain responses during memory tasks: A PET study in healthy young and elderly subjects. Neuroimage, 19(3), 12151227. doi: 10.1016/S1053-8119(03)00074-0 CrossRefGoogle Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime reference guide. Pittsburgh, PA: Psychology Software Tools, Incorporated.Google Scholar
Schooler, C., Mulatu, M.S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14(3), 483506. doi: 10.1037/0882-7974.14.3.483 CrossRefGoogle ScholarPubMed
Siedlecki, K.L., Stern, Y., Reuben, A., Sacco, R.L., Elkind, M.S.V., & Wright, C.B. (2009). Construct validity of cognitive reserve in a multiethnic cohort: The Northern Manhattan study. Journal of the International Neuropsychological Society, 15(4), 558569. doi: 10.1017/S1355617709090857 CrossRefGoogle Scholar
Singh-Manoux, A., Marmot, M.G., Glymour, M., Sabia, S., Kivimäki, M., & Dugravot, A. (2011). Does cognitive reserve shape cognitive decline? Annals of Neurology, 70(2), 296304. doi: 10.1002/ana.22391 CrossRefGoogle ScholarPubMed
Smith, A. (1968). The Symbol Digit Modalities Test: A neuropsychologic test for economic screening of learning and other cerebral disorders. In Hellmuth, J. (Ed.), Learning disorders, Vol. 3, (pp. 93135). Seattle, WA: Special Child Publications.Google Scholar
Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I.C., … Molinuevo, J.L. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 11141124.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460. doi: 10.1017/S1355617702813248 CrossRefGoogle ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. doi: 10.1016/j.neuropsychologia.2009.03.004 CrossRefGoogle ScholarPubMed
Sternberg, R.J., Grigorenko, E., & Bundy, D.A. (2001). The predictive value of IQ. Merrill-Palmer Quarterly, 47(1), 141. doi: 10.1353/mpq.2001.0005 CrossRefGoogle Scholar
Stroop, R.J. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643662. doi: 10.1037/h0054651 CrossRefGoogle Scholar
Süß, H.-M., Oberauer, K., Wittmann, W.W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—and a little bit more. Intelligence, 30(3), 261288. doi: 10.1016/S0160-2896(01)00100-3 CrossRefGoogle Scholar
Tabachnick, B.G., & Fidell, L.S. (2006). Using Multivariate Statistics (5th ed.). Boston, MA: Allyn & Bacon.Google Scholar
Tinsley, H.E., & Tinsley, D.J. (1987). Uses of factor analysis in counseling psychology research. Journal of Counseling Psychology, 34(4), 414424. doi: 10.1037/0022-0167.34.4.414 CrossRefGoogle Scholar
Tucker, A.M., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8(4), 354360. doi: 10.2174/156720511795745320 CrossRefGoogle Scholar
Tucker-Drob, E.M., Johnson, K.E., & Jones, R.N. (2009). The cognitive reserve hypothesis: A longitudinal examination of age-associated declines in reasoning and processing speed. Developmental Psychology, 45(2), 431446. doi: 10.1037/a0014012 CrossRefGoogle ScholarPubMed
Valenzuela, M.J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4), 441454. doi: 10.1017/S0033291705006264 CrossRefGoogle ScholarPubMed
van der Elst, W., van Boxtel, M.P.J., van Breukelen, G.J.P., & Jolles, J. (2005). Rey’s Verbal Learning Test: Normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. Journal of the International Neuropsychological Society, 11(3), 290302. doi: 10.1017/S1355617705050344 CrossRefGoogle ScholarPubMed
van der Elst, W., van Boxtel, M.P.J., van Breukelen, G.J.P., & Jolles, J. (2006a). Normative data for the animal, profession and letter M naming verbal fluency tests for Dutch speaking participants and the effects of age, education, and sex. Journal of the International Neuropsychological Society, 12(1), 8089. doi: 10.1017/S1355617706060115 CrossRefGoogle Scholar
van der Elst, W., van Boxtel, M.P.J., van Breukelen, G.J.P., & Jolles, J. (2006b). The Concept Shifting Test: Adult normative data. Psychological Assessment, 18(4), 424432. doi: 10.1037/1040-3590.18.4.424 CrossRefGoogle ScholarPubMed
van der Elst, W., van Boxtel, M.P.J., van Breukelen, G.J.P., & Jolles, J. (2006c). The Stroop Color-Word Test: Influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment, 13(1), 6279. doi: 10.1177/1073191105283427 CrossRefGoogle ScholarPubMed
van Gerven, P.W.M., van Boxtel, M.P.J., Meijer, W.A., Willems, D., & Jolles, J. (2007). On the relative role of inhibition in age-related working memory decline. Aging, Neuropsychology, and Cognition, 14(1), 95107. doi: 10.1080/138255891007038 CrossRefGoogle ScholarPubMed
Vink, M. & Jolles, J. (1985). Abstracts of platform and poster presentations: A new version of the trail making test and an information-processing task. Journal of Clinical and Experimental Neuropsychology, 7(2), 162. doi: 10.1080/01688638508401250 Google Scholar
Whalley, L.J., Deary, I.J., Appleton, C.L., & Starr, J.M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 3(4), 369382. doi: 10.1016/j.arr.2004.05.001 CrossRefGoogle ScholarPubMed
Zahodne, L.B., Manly, J.J., Brickman, A.M., Siedlecki, K.L., Decarli, C., & Stern, Y. (2013). Quantifying cognitive reserve in older adults by decomposing episodic memory variance: Replication and extension. Journal of the International Neuropsychological Society, 19(8), 854862. doi: 10.1017/S1355617713000738 CrossRefGoogle Scholar
Zihl, J., Fink, T., Pargent, F., Ziegler, M., & Bühner, M. (2014). Cognitive reserve in young and old healthy subjects: Differences and similarities in a testing-the-limits paradigm with DSST. PloS One, 9(1), e84590. doi: 10.1371/journal.pone.0084590 CrossRefGoogle Scholar
Supplementary material: File

McGarrigle et al. supplementary material

McGarrigle et al. supplementary material 1

Download McGarrigle et al. supplementary material(File)
File 39 KB