Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-m8q6h Total loading time: 0.25 Render date: 2021-05-11T06:53:15.523Z Has data issue: true Feature Flags: {}

Bruhat–Tits theory from Berkovich's point of view. II Satake compactifications of buildings

Published online by Cambridge University Press:  13 December 2011

Bertrand Rémy
Affiliation:
Université de Lyon, Université Lyon 1, CNRS—UMR 5208, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex, France (remy@math.univ-lyon1.fr; thuillier@math.univ-lyon1.fr)
Amaury Thuillier
Affiliation:
Université de Lyon, Université Lyon 1, CNRS—UMR 5208, Institut Camille Jordan, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex, France (remy@math.univ-lyon1.fr; thuillier@math.univ-lyon1.fr)
Annette Werner
Affiliation:
Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Strasse 6–8, D-60325 Frankfurt a.M., Germany (werner@math.uni-frankfurt.de)

Abstract

In the paper ‘Bruhat–Tits theory from Berkovich's point of view. I. Realizations and compactifications of buildings’, we investigated various realizations of the Bruhat–Tits building of a connected and reductive linear algebraic group G over a non-Archimedean field k in the framework of Berkovich's non-Archimedean analytic geometry. We studied in detail the compactifications of the building which naturally arise from this point of view. In the present paper, we give a representation theoretic flavour to these compactifications, following Satake's original constructions for Riemannian symmetric spaces.

We first prove that Berkovich compactifications of a building coincide with the compactifications, previously introduced by the third named author and obtained by a gluing procedure. Then we show how to recover them from an absolutely irreducible linear representation of G by embedding in the building of the general linear group of the representation space, compactified in a suitable way. Existence of such an embedding is a special case of Landvogt's general results on functoriality of buildings, but we also give another natural construction of an equivariant embedding, which relies decisively on Berkovich geometry.

MSC classification

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Berkovich, V. G., Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, Volume 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
2.Berkovich, V. G., The automorphism group of the Drinfeld half-plane, C. R. Acad. Sci. Paris 321 (1995), 11271132.Google Scholar
3.Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, Volume 126 (Springer, 1991).CrossRefGoogle Scholar
4.Borel, A. and Tits, J., Groupes réductifs, Publ. Math. IHES 27 (1965), 55150.CrossRefGoogle Scholar
5.Bosch, S., Güntzer, U. and Remmert, R., Non-archimedean analysis, Grundlehren der Mathematischen Wissenschaften, Volume 261 (Springer, 1984).CrossRefGoogle Scholar
6.Bruhat, F. and Tits, J., Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259301.CrossRefGoogle Scholar
7.Chevalley, C., Classification des groupes algébriques semi-simples, CollectedWorks, Volume 3 (Springer, 2005).Google Scholar
8.Demazure, M. and Grothendieck, A. (eds), Schémas en groupes. Séminaire de géométrie algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Mathematics, Volume 151–153 (Springer, 1970).Google Scholar
9.Goldman, O. and Iwahori, N., The space of p-adic norms, Acta Math. 109 (1963), 137177.CrossRefGoogle Scholar
10.Guivarc'h, Y. and Rémy, B., Group theoretic compactification of Bruhat–Tits buildings, Annales Scient. Éc. Norm. Sup. 39 (2006), 871920.CrossRefGoogle Scholar
11.Landvogt, E., Some functorial properties of the Bruhat–Tits building, J. Reine Angew. Math. 518 (2000), 213241.Google Scholar
12.Rémy, B., Thuillier, A. and Werner, A., Bruhat–Tits theory from Berkovich's point of view, I, Realizations and compactifications of buildings, Annales Scient. Éc. Norm. Sup. 43 (2010), 461554.CrossRefGoogle Scholar
13.Satake, I., On representations and compactifications of symmetric Riemannian spaces, Annals Math. 71 (1960), 77110.CrossRefGoogle Scholar
14.Werner, A., Compactification of the Bruhat–Tits building of PGL by lattices of smaller rank, Documenta Math. 6 (2001), 315341.Google Scholar
15.Werner, A., Compactification of the Bruhat–Tits building of PGL by seminorms, Math. Z. 248 (2004), 511526.CrossRefGoogle Scholar
16.Werner, A., Compactifications of Bruhat–Tits buildings associated to linear representations, Proc. Lond. Math. Soc. 95 (2007), 497518.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bruhat–Tits theory from Berkovich's point of view. II Satake compactifications of buildings
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bruhat–Tits theory from Berkovich's point of view. II Satake compactifications of buildings
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bruhat–Tits theory from Berkovich's point of view. II Satake compactifications of buildings
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *