Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T12:02:34.858Z Has data issue: false hasContentIssue false

FROM C*-ALGEBRA EXTENSIONS TO COMPACT QUANTUM METRIC SPACES, QUANTUM SU(2), PODLEŚ SPHERES AND OTHER EXAMPLES

Published online by Cambridge University Press:  09 June 2011

PARTHA SARATHI CHAKRABORTY*
Affiliation:
The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600113, India (email: parthac@imsc.res.in)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct compact quantum metric spaces starting from a C*-algebra extension with a positive splitting. As special cases, we discuss Toeplitz algebras, quantum SU(2) and Podleś spheres.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Chakraborty, P. S., ‘Metrics on the quantum Heisenberg manifolds’, J. Operator Theory 54 (2005), 93100.Google Scholar
[2]Connes, A., ‘Compact metric spaces, Fredholm modules, and hyperfiniteness’, Ergod. Th. & Dynam. Sys. 9 (1989), 207220.CrossRefGoogle Scholar
[3]Connes, A., Noncommutative Geometry (Academic Press, New York, 1994).Google Scholar
[4]Higson, N. and Roe, J., Analytic K-Homology, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000).Google Scholar
[5]Li, H., ‘Compact quantum metric spaces and ergodic actions of compact quantum groups’, J. Funct. Anal. 256 (2009), 33683408.CrossRefGoogle Scholar
[6]Podleś, P., ‘Quantum spheres’, Lett. Math. Phys. 14 (1987), 193202.CrossRefGoogle Scholar
[7]Rieffel, M. A., ‘Metrics on states from actions of compact groups’, Doc. Math. 3 (1998), 215229 (electronic).CrossRefGoogle Scholar
[8]Rieffel, M. A., ‘Metrics on state spaces’, Doc. Math. 4 (1999), 559600 (electronic).CrossRefGoogle Scholar
[9]Rieffel, M. A., ‘Group C*-algebras as compact quantum metric spaces’, Doc. Math. 7 (2002), 605651 (electronic).CrossRefGoogle Scholar
[10]Rieffel, M. A., ‘Gromov–Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance’, Mem. Amer. Math. Soc. 168 (2004), 796.Google Scholar
[11]Sheu, A. J.-L., ‘Quantization of the Poisson SU(2) and its Poisson homogeneous space—the 2-sphere’, Comm. Math. Phys. 135 (1991), 217232; with an appendix by Jiang-Hua Lu and Alan Weinstein.CrossRefGoogle Scholar
[12]Woronowicz, S. L., ‘Twisted SU(2) group. An example of a noncommutative differential calculus’, Publ. RIMS, Kyoto University Univ. 23 (1987), 117181.CrossRefGoogle Scholar