Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T13:36:37.818Z Has data issue: false hasContentIssue false

A bound for the class of certain nilpotent groups

Published online by Cambridge University Press:  09 April 2009

Chander Kanta Gupta
Affiliation:
Institute of Advanced Studies, The Australian National UniversityCanberra. A.C.T.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The groups whose 2-generator subgroups are all nilpotent of class at most 2 are nilpotent of class at most 3 (see Levi [6]). Heineken [3] generalized Levi's result by proving that for n ≧ 3, if the n-generator subgroups of a group are all nilpotent of class at most n, then the group itself is nilpotent of class at most n. Other related problems have been considered by Bruck [1].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1965

References

[1]Bruck, R. H., Engel conditions in groups and related questions. Lecture Notes; Third Summer Research Institute of the Aust. Math. Soc., 1963, Canberra.Google Scholar
[2]Hall., M. Jr, The Theory of Groups, Macmillan, 1959.Google Scholar
[3]Heineken, H., Über ein Levisches Nilpotenzkriterium, Archiv. der Math. 12 (1961), 176178.Google Scholar
[4]Iwasawa, Kenkiti, Über die Struktur der endlichen Gruppen, deren echte Untergruppen Sāmtlich nilpotent sind. Proc. Phys-Math. Soc. Japan. 23 (1941), 14.Google Scholar
[5]Kappe, Wolfgang, Gruppen Theoretische Eigenschaften Und Charakteristische Untergruppen, Archiv. der Math. 13 (1962), 3848.CrossRefGoogle Scholar
[6]Levi, F. W., Groups in which the Commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. (N.S.) 6 (1942) 8797.Google Scholar
[7]Macdonald, I. D., Generalizations of a classical theorem about nilpotent groups. Ill. J. Math. 8 (1964), 556570.Google Scholar
[8]Newman, M. F. and Wiegold, James, Groups with many nilpotent subgroups, Arch. Math. 15 (1964), 241250.CrossRefGoogle Scholar
[9]Rédei, L., Das, Schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtcommutativen Gruppen mit lauter Kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur Kommutative Gruppen gehören, Comm. Math. Helv. 20 (1947), 225264.CrossRefGoogle Scholar
[10]Rédei, Ladislaus, Die endlichen einstufig nicht nilpotenten Gruppen, Publ. Math. Debrecen 4 (1956), 303324.Google Scholar