Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T14:24:19.426Z Has data issue: false hasContentIssue false

Turbulent bremsstrahlung instability of whistler mode in the presence of enhanced ion-acoustic fluctuations

Published online by Cambridge University Press:  13 March 2009

S. N. Sarma
Affiliation:
Institute of Advanced Study in Science and Technology, Assam Science Society, Gauhati-781 001, India
M. Nambu
Affiliation:
Institute of Advanced Study in Science and Technology, Assam Science Society, Gauhati-781 001, India
S. Bujarbarua
Affiliation:
Institute of Advanced Study in Science and Technology, Assam Science Society, Gauhati-781 001, India

Abstract

In the presence of a low-frequency ion-acoustic turbulence and a high-frequency whistler-mode test wave, a new plasma instability occurs owing to a nonlinear force which originates from the resonant interaction between electrons and modulated nonlinear electric fields. The growth rate of the whistler mode is calculated and compared with observations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bujarbarua, S. & Nambu, M. 1983 J. Phys. Soc. Japan, 52, 2285.CrossRefGoogle Scholar
Bujarbarua, S., Sarma, S. N. & Nambu, M. 1984 Phys. Rev. A29, 2171.CrossRefGoogle Scholar
Buneman, O. 1958 Phys. Rev. Lett. 1, 8.CrossRefGoogle Scholar
Coroniti, F. V., Kennel, C. F., Scarf, F. L. & Smith, E. J. 1982 J. Geophys. Res. 87, 6029.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dicke, R. H. 1954 Phys. Rev. 93, 99.CrossRefGoogle Scholar
DuBois, D. F. & Goldman, M. V. 1966 Phys. Rev. Lett. 14, 544.CrossRefGoogle Scholar
Frank, I. & Ginzburg, V. 1945 J. Phys. USSR, 9, 353.Google Scholar
Fujiyama, H. & Nambu, M. 1983 Proceedings of 16th International Conference on Phenomena in Ionized Gases, Düsseldorf.Google Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M. D. 1975 J. Geophys. Res. 80, 4197.CrossRefGoogle Scholar
Gurnett, D. A., Marsch, E., Philipp, W., Schwenn, R. & Rosenbauer, H. 1979 J. Geophys. Res. 84, 2029.CrossRefGoogle Scholar
Kuijpers, J. 1981 Astron. Astrophys. 103, 331.Google Scholar
Lin, A. T., Kaw, P. K. & Dawson, J. M. 1973 Phys. Rev. A 8, 2618.CrossRefGoogle Scholar
Melrose, D. B. 1982 Aust. J. Phys. 35, 67.CrossRefGoogle Scholar
Nambu, M. & Shukla, P. K. 1979 Phys. Rev. A 19, 2498.CrossRefGoogle Scholar
Nambu, M. 1980 J. Phys. Soc. Japan, 49, 2349.CrossRefGoogle Scholar
Nambu, M., Bujarbarua, S., Shukla, P. K. & Spatschek, K. H. 1980 J. Plasma Phys. 23, 483.CrossRefGoogle Scholar
Nambu, M. 1981 Phys. Rev. A 23, 3272.CrossRefGoogle Scholar
Nambu, M. 1982 Phys. Fluids, 25, 1204.CrossRefGoogle Scholar
Nambu, M. & Akama, H. 1984 Physica D. (To be published.)Google Scholar
Rozmus, W., Offenberger, A. A. & Fedosejevs, R. 1983 Phys. Fluids, 26, 1071.CrossRefGoogle Scholar
Tsytovich, V. N. 1980 Proceedings of International Conference on Plasma Physics Nagoya, vol. 2, p. 285.Google Scholar
Vlahos, L. & Papadopoulos, K. 1982 Ap. J. 252, L 75.CrossRefGoogle Scholar