Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T02:26:16.807Z Has data issue: false hasContentIssue false

Spectral studies of nanosecond laser interaction with magnesium sulfate target in air

Published online by Cambridge University Press:  13 December 2013

Muhammad Salik*
Affiliation:
School of Science, Department of Physics, Beijing Jiaotong University, 100044 Beijing, China
Muhammad Hanif
Affiliation:
MCS (National University of Sciences and Technology), 46000 Rawalpindi, Pakistan
Jiasheng Wang
Affiliation:
School of Science, Department of Physics, Beijing Jiaotong University, 100044 Beijing, China
Xi-Qing Zhang
Affiliation:
School of Science, Department of Physics, Beijing Jiaotong University, 100044 Beijing, China
*
Email address for correspondence: 12119009@bjtu.edu.cn

Abstract

The optical emission characterization of the plasma-assisted pulsed laser ablation of the magnesium sulfate target is discussed in this study. The emission spectrum produced by the magnesium sulfate plasma in the wavelength range 200–700 nm has been carefully investigated for different experimental conditions. The spectra analysis was performed by assuming the local thermodynamic equilibrium (LTE) approximation and calculating the plasma temperature with the Boltzmann plot method using neutral Mg spectral lines. The plasma temperature was obtained for different positions along the expansion axis, which allowed obtaining the electron population distribution as a function of the distance from the target. The plasma temperature along the expansion axis allowed evaluating the evolution of the excited states population when the plume expands. Moreover, the Stark broadening method has been employed for electron number density measurements. In this study, the Stark width of the Mg (I) spectral line at 285.21 nm was used. Besides, we have studied the variation of electron temperature (Te) and electron number density (Ne) as a function of laser irradiance.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Salam, Z. A., Galmed, A. H., Tognoni, E. and Harith, M. A. 2007 Spectrochim. Acta 62, 13431347.Google Scholar
Abderrazak, K., Kriaa, W., Salem, W. B., Mhiri, H., Lepalec, G. and Autric, M. 2009 Optics & Laser Tec. 41, 470480.Google Scholar
Bubb, D. M., Papantonakis, M. R., Toftmann, B., Horwitz, J. S., McGill, R. A., Chrisey, D. B. and Haglund, R. F. Jr 2002 J. Appl. Phys. 91, 9809.Google Scholar
Chang, J. J. and Warner, B. E. 1996a Appl. Phys. Lett. 69, 473475.Google Scholar
Chang, J. J. and Warner, B. E. 1996b Appl. Phys. Lett. 69, 473.Google Scholar
Cremers, D. A. and Chinni, R. C. 2009 Appl. Spectrosc. Rev. 44, 457506.Google Scholar
Cremers, D. A. and Radziemski, L. J. 2006 Handbook of Laser-Induced Breakdown Spectroscopy. Chichester: John Wiley.Google Scholar
Dirnberger, L., Dyer, P. E., Farrar, S., Key, P. H. and Monk, P. 2011 J. Alloys Compd. 509, 37403745.Google Scholar
Dittrich, K. and Wennrich, R. 1984 Prog. Anal. At. Spectrosc. 7, 139.Google Scholar
Fabbro, R., Fabre, E., Amirano, F., Garban-Labaune, C., Virmont, J., Weinfeld, M. and Max, C. E. 1980 Phys. Rev. A 26, 2289.Google Scholar
Gamaly, E. G., Rode, A. V. and Luther, D. B. 1999 J. Appl. Phys. 85, 4213.Google Scholar
Goldbach, C., Nollez, G., Plomdeur, P. and Zimmermann, J. P. 1982 Phys. Rev. A 25, 25962605.CrossRefGoogle Scholar
Gordillo-Vazquez, F. J., Perea, A., Chaos, J. A. and Afonso, C. N. 2000 Appl. Phys. Lett. 7, 78.Google Scholar
Gornushkin, S. I., Gornushkin, I. B., Anzano, J. M., Smith, B. W. and Winefordner, J. D. 2002 Appl. Spectrosc. 56, 433436.Google Scholar
Griem, H. R. 1997 Principles of Plasma Spectroscopy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hahn, D. W. and Omenetto, N. 2010 Appl. Spectrosc. 64, 335A–366A.Google Scholar
Hanif, M., Salik, M. and Baig, M. A. 2011 Opt. Lasers Eng. 49 (12), 1456.CrossRefGoogle Scholar
Hanif, M., Salik, M., Sheikh, N. M. and Baig, M. A. 2013 Appl. Phys. B 110, 563571.Google Scholar
Harila, S. S., Bindhu, C. V., Issac, R. C., Nampoori, V. P. N. and Vallabhan, C. P. G. 1997 J. Appl. Phys. 82, 21402146.Google Scholar
Hohreiter, V., Carranza, J. E. and Hahn, D. W. 2004 Spectrochim. Acta B 59, 327333.Google Scholar
Kaiser, J., et al. 2009 Spectrochim. Acta 64, 6773.Google Scholar
Konjevic, N. and Wiese, W. L. 1984 Atoms J. Phys. Chem Ref. Data 13, 3.Google Scholar
Lee, W. B., Wu, J. and Lee, Y. 2004 Appl. Spectrosc. Rev. 39, 2797.Google Scholar
Martin, M. Z., Cheng, M. D. and Martin, R. C. 1999 Aerosol. Sci. Tech. 31, 409.Google Scholar
McWhirter, R. W. P. 1965 In: Plasma Diagnostic Techniques (eds. Huddleston, R. H. and Leonard, S. L.). New York: Academic Press.Google Scholar
Miziolek, A., Palleschi, V. and Schechter, I. 2006 Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge, UK: Cambridge University Press.Google Scholar
Mohamed, W. T. Y. 2008 Opt. Laser Technol. 40, 3038.Google Scholar
Radziemski, L. J. 2002 Spectrochim. Acta 57, 11091113.Google Scholar
Ruiz, J., González, A., Cabalín, L. M. and Laserna, J. J. 2010 Appl. Spectrosc. 64, 13421349.Google Scholar
Salik, M., Hanif, M. and Baig, M. 2011 IEEE Trans. Plasma Sci. 39, 18611867.Google Scholar
Singh, J. P. and Thakur, S. N. 2007 Laser-Induced Breakdown Spectroscopy. Amsterdam: Elsevier Science, B. V.Google Scholar
Stavropoulos, P., Palagas, C., Angelopoulos, G. N., Papamantellos, D. N. and Couris, S. 2004 Spectrochim. Acta B 59, 1885.Google Scholar
St-Onge, L., Archambault, J. F., Kwong, E., Sabsabi, M. and Vadas, E. B. 2005 J Pharm. Pharmaceut. Sci. 8, 272288.Google Scholar
Vadillo, J. M., Vadillo, I., Carrasco, F. and Laserna, J. J. 1998 Fresenius' J. Anal. Chem. 361, 119123.Google Scholar
Winefordner, J. D., Gornushkin, I. B., Correll, T., Gibb, E., Smith, B. W. and Omenettoa, N. 2004 J. Anal. Atom. Spectrom. 19, 10611083.Google Scholar