Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T05:12:25.742Z Has data issue: false hasContentIssue false

Simulations of two-stream instability in opposite polarity dusty plasmas

Published online by Cambridge University Press:  16 January 2012

S. ERIC CLARK
Affiliation:
Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA (clarkse@physics.ucla.edu)
M. ROSENBERG
Affiliation:
Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA (clarkse@physics.ucla.edu)
K. QUEST
Affiliation:
Electrical and Computer Engineering Department, University of California, San Diego, CA 92093, USA (clarkse@physics.ucla.edu)

Abstract

One-dimensional Particle in Cell simulations of a dust–dust counterstreaming instability in a plasma containing dust grains of opposite charge polarity are presented. This dust–dust instability has potentially the lowest threshold drift for a dust wave instability in an unmagnetized dusty plasma. The linear and nonlinear development of this instability is investigated, including the effects of collisions with background neutrals, and a background electric field that acts as a driver to impart the drift velocities of the counter-streaming oppositely charged dust particles. The saturation of the linear instability appears to be due to dust heating related to dust trapping. Potential double layer formation from dust–dust instability turbulence is observed in cases with a high neutral collision rate. A comparative study is done with varying collision rates and background electric fields to explore the nonlinear development as a function of collision rate and background electric field. Applications to possible dusty plasma experimental parameters are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, C., Hudson, M. K. and Lotko, W. 1985 Phys. Fluids 28, 1055.CrossRefGoogle Scholar
Boessé, C. M., Henry, M. K., Hyde, T. W. and Matthews, L. S. 2004 Adv. Space Res. 34, 2374.CrossRefGoogle Scholar
da Costa, A. A., Diver, D. A. and Stewart, G. A. 2001 Astron. Astrophys. 366, 129.CrossRefGoogle Scholar
D'Angelo, N. 2001 Planet. Space Sci. 49, 1251.Google Scholar
DeGroot, J. S., Barnes, C., Walstead, A. E. and Buneman, O. 1977 Phys. Rev. Lett. 38, 1283.Google Scholar
El-Taibany, W. F., Kourakis, I. and Wadati, M. 2008 Plasma Phys. Control. Fusion 50, 074003.Google Scholar
Fried, B. D. and Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Gillespie, D. T. 1993 Am. J. Phys. 61, 1077.Google Scholar
Havnes, O., Brattli, A., Aslaksen, T., Singer, W., Latteck, R., Blix, T., Thrane, E. and Trøim, J. 2001 Geophys. Res. Lett. 28, 1419.CrossRefGoogle Scholar
Horányi, M. 1996 Annu. Rev. Astron. Astrophys. 34, 383.Google Scholar
Horányi, M., Morfill, G. E. and Grun, E. 1993 Nature (London) 363, 144.Google Scholar
Huba, J. D. 2007 NRL Plasma Formulary. Washington, DC: Office of Naval Research.CrossRefGoogle Scholar
Joyce, G., Lampe, M. and Ganguli, G. 2002 Phys. Rev. Lett. 88, 095006.Google Scholar
Kawamura, E., Lichtenberg, A. J. and Lieberman, M. A. 2010 J. Appl. Phys. 107, 123301.CrossRefGoogle Scholar
Knorr, G. and Goertz, C. K. 1974 Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
Kumar, R. and Malik, H. K. 2011 J. Phys. Soc. Jap. 80, 044502.CrossRefGoogle Scholar
Lin, M. M. and Duan, W. S. 2005 Comm. Theoret. Phys. l44, 719.CrossRefGoogle Scholar
Luque, A., Schamel, H., Eliasson, B. and Shukla, P. K. 2005 Phys. Plasmas 12, 122307.CrossRefGoogle Scholar
Maharaj, S. K., Bharuthram, B., Singh, S. V., Pillay, S. R. and Lakhina, G. S. 2010 J. Plasma Phys. 76, 441.CrossRefGoogle Scholar
Mamun, A. A. 2008 Phys. Rev. E 77, 026406.CrossRefGoogle Scholar
Mamun, A. A. 2011 Phys. Lett. A 375, 40294033.Google Scholar
Mamun, A. A. and Mannan, A. 2011 JETP Lett. 94, 356361.Google Scholar
Medvedev, Yu. V. 2002 Plasma Phys. Control. Fusion 44, 1449.CrossRefGoogle Scholar
Meige, A., Plihon, N., Hagelaar, G. J. M., Boeuf, J.-P., Chabert, P. and Boswell, R. W. 2007 Phys. Plasmas 14, 053508.CrossRefGoogle Scholar
Merrison, J., Jenson, J., Kinch, K., Mugford, R. and Nornberg, P. 2004 Planet. Space Sci. 52, 279.CrossRefGoogle Scholar
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.CrossRefGoogle Scholar
Ossakow, S. L., Papadopoulos, K., Orens, J. and Coffey, T. 1975 J. Geophys. Res. 80, 141.Google Scholar
Plihon, N. and Chabert, P. 2011 Phys. Plasmas 18, 082102.Google Scholar
Rao, N. N., Yu, M. Y. and Shukla, P. K. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Robertson, S., Horányi, M. et al. , 2009 Annales Geophys. 27, 12131232.Google Scholar
Rosenberg, M. 1996 J. Vac. Sci. Technol. A 14, 631.CrossRefGoogle Scholar
Sato, T. and Okuda, H. 1980 Phys. Rev. Lett. 44, 740.CrossRefGoogle Scholar
Sato, T. and Okuda, H. 1981 J. Geophys. Res. 86, 3357.Google Scholar
Shukla, P. K. and El-Shorbagy, K. H. 2005 Phys. Scripta 71, 406.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 2006 Phys. Scripta 73, 196.Google Scholar
Smiley, B., Robertson, S., Horányi, M., Blix, T., Rapp, M., Latteck, R. and Gumbel, J. 2003 J. Geophys. Res. 108, 8444.Google Scholar
Thomas, E. Jr. 1999 Phys. Plasmas 6, 2672.Google Scholar
Thomas, E. Jr. 2001 Phys. Plasmas 8, 329.CrossRefGoogle Scholar
Tuszewski, M. and Gary, S. P. 2003 Phys. Plasmas 10, 539.Google Scholar
Verheest, F. 2009 Phys. Plasmas 16, 013704.CrossRefGoogle Scholar
Winske, D. 2004 IEEE Trans. Plasma Sci. 32, 663.Google Scholar
Winske, D. and Rosenberg, M. 1998 IEEE Trans. Plasma Sci. 26, 92.CrossRefGoogle Scholar