Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-02T03:19:48.782Z Has data issue: false hasContentIssue false

Simulation campaign of the turbulent diffusion at the edge of fusion devices

Published online by Cambridge University Press:  15 February 2023

L. Scarivaglione
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
F. Valentini
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
S. Servidio*
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza, Italy
*
Email address for correspondence: sergio.servidio@fis.unical.it

Abstract

The understanding of cross-field transport is crucial for optimizing the properties of magnetic confinement in fusion devices. In this work, a two-dimensional, simplified model is used to study the turbulent dynamics in the region of the scrape-off layer. The numerical model, based on the reduced Braginskii equations, is able to describe the formation and the evolution of blob-like structures. The dynamics has been investigated by using both classical Eulerian analysis and the Lagrangian approach, by varying the ambient conditions of the plasma. The major goals are (i) a detailed and systematic study of turbulence by varying the plasma jump conditions in the edge tokamaks plasmas and (ii) a Lagrangian diffusion study of the edge turbulence by using an appropriate Braginskii model. It has been found that both the magnetic shear and the plasma mean profiles of density and temperature are crucial for setting the properties of the transport. By following fluid tracers, diffusive transients for the radial transport are observed, at length scales larger than the typical blob size. This work is relevant for the comprehension of the turbulent transport at tokamaks edges.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angioni, C., Fable, E., Greenwald, M., Maslov, M., Peeters, A.G., Takenaga, H. & Weisen, H. 2009 Particle transport in tokamak plasmas, theory and experiment. Plasma Phys. Control. Fusion 51 (12), 124017.CrossRefGoogle Scholar
Antar, G.Y., Counsell, G., Yu, Y., Labombard, B. & Devynck, P. 2003 Universality of intermittent convective transport in the scrape-off layer of magnetically confined devices. Phys. Plasmas 10 (2), 419428.CrossRefGoogle Scholar
Antar, G.Y., Devynck, P., Garbet, X. & Luckhardt, S.C. 2001 a Turbulence intermittency and burst properties in tokamak scrape-off layer. Phys. Plasmas 8 (5), 16121624.CrossRefGoogle Scholar
Antar, G.Y., Krasheninnikov, S.I., Devynck, P., Doerner, R.P., Hollmann, E.M., Boedo, J.A., Luckhardt, S.C. & Conn, R.W. 2001 b Experimental evidence of intermittent convection in the edge of magnetic confinement devices. Phys. Rev. Lett. 87 (6), 065001.CrossRefGoogle ScholarPubMed
Beadle, C.F. & Ricci, P. 2020 Understanding the turbulent mechanisms setting the density decay length in the tokamak scrape-off layer. J. Plasma Phys. 86 (1), 175860101.CrossRefGoogle Scholar
Bian, N.H. & Garcia, O.E. 2003 Confinement and dynamical regulation in two-dimensional convective turbulence. Phys. Plasmas 10 (12), 46964707.CrossRefGoogle Scholar
Biglari, H., Diamond, P.H. & Terry, P.W. 1990 Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2 (1), 14.CrossRefGoogle Scholar
Boedo, J.A., Myra, J.R., Zweben, S., Maingi, R., Maqueda, R.J., Soukhanovskii, V.A., Ahn, J.W., Canik, J., Crocker, N., D'Ippolito, D.A., et al. 2014 Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes. Phys. Plasmas 21 (4), 042309.CrossRefGoogle Scholar
Braginskii, S.I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205.Google Scholar
Chen, F.F. 1984 Book-review – introduction to plasma physics and controlled fusion. J. Br. Astron. Assoc. 95 (1), 45.Google Scholar
Devynck, P., Brotankova, J., Peleman, P., Spolaore, M., Figueiredo, H., Hron, M., Kirnev, G., Martines, E., Stockel, J., Van Oost, G., et al. 2006 Dynamics of turbulent transport in the scrape-off layer of the CASTOR tokamak. Phys. Plasmas 13 (10), 102505.CrossRefGoogle Scholar
Diamond, P.H. & Kim, Y.B. 1991 Theory of mean poloidal flow generation by turbulence. Phys. Fluids B 3 (7), 16261633.CrossRefGoogle Scholar
D'Ippolito, D.A., Myra, J.R. & Krasheninnikov, S.I. 2002 Cross-field blob transport in tokamak scrape-off-layer plasmas. Phys. Plasmas 9 (1), 222233.CrossRefGoogle Scholar
Endler, M. 1999 Turbulent SOL transport in stellarators and tokamaks. J. Nucl. Mater. 266, 8490.CrossRefGoogle Scholar
Fundamenski, W., Garcia, O.E., Naulin, V., Pitts, R.A., Nielsen, A.H., Rasmussen, J.J., Horacek, J., Graves, J.P. & JET EFDA contributors 2007 Dissipative processes in interchange driven scrape-off layer turbulence. Nucl. Fusion 47 (5), 417433.CrossRefGoogle Scholar
Garbet, X. 2006 Introduction to turbulent transport in fusion plasmas. C. R. Phys. 7 (6), 573583.CrossRefGoogle Scholar
García-Regaña, J.M., Barnes, M., Calvo, I., González-Jerez, A., Thienpondt, H., Sánchez, E., Parra, F.I. & St. Onge, D.A. 2021 Turbulent transport of impurities in 3D devices. Nucl. Fusion 61 (11), 116019.CrossRefGoogle Scholar
Garcia, O.E. 2001 Two-field transport models for magnetized plasmas. J. Plasma Phys. 65 (2), 8196.CrossRefGoogle Scholar
Garcia, O.E. 2009 Blob transport in the plasma edge: a review. Plasma Fusion Res. 4, 019.CrossRefGoogle Scholar
Garcia, O.E., Bian, N.H., Paulsen, J.V., Benkadda, S. & Rypdal, K. 2003 Confinement and bursty transport in a flux-driven convection model with sheared flows. Plasma Phys. Control. Fusion 45 (6), 919932.CrossRefGoogle Scholar
Garcia, O.E., Horacek, J., Pitts, R.A., Nielsen, A.H., Fundamenski, W., Naulin, V. & Rasmussen, J.J. 2007 Fluctuations and transport in the TCV scrape-off layer. Nucl. Fusion 47 (7), 667676.CrossRefGoogle Scholar
Garcia, O.E., Naulin, V., Nielsen, A.H. & Rasmussen, J.J. 2004 Computations of intermittent transport in scrape-off layer plasmas. Phys. Rev. Lett. 92 (16), 165003.CrossRefGoogle ScholarPubMed
Garcia, O.E., Naulin, V., Nielsen, A.H. & Rasmussen, J.J. 2005 Turbulence and intermittent transport at the boundary of magnetized plasmas. Phys. Plasmas 12 (6), 062309.CrossRefGoogle Scholar
Giacomin, M. & Ricci, P. 2020 Investigation of turbulent transport regimes in the tokamak edge by using two-fluid simulations. J. Plasma Phys. 86 (5).CrossRefGoogle Scholar
Gray, D.R. & Kilkenny, J.D. 1980 The measurement of ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma. Plasma Phys. 22 (2), 81.CrossRefGoogle Scholar
Grenfell, G., Spolaore, M., Abate, D., Carraro, L., Marrelli, L., Predebon, I., Spagnolo, S., Veranda, M., Agostini, M., van Milligen, B.P., et al. 2020 Turbulent filament properties in L and H-mode regime in the RFX-mod operating as a tokamak. Nucl. Fusion 60 (12), 126006.CrossRefGoogle Scholar
Halpern, F.D. & Ricci, P. 2016 Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks. Nucl. Fusion 57 (3), 034001.CrossRefGoogle Scholar
Hidalgo, C., Gonçalves, B., Pedrosa, M.A., Silva, C., Balbín, R., Hron, M., Loarte, A., Erents, K., Matthews, G.F. & Pitts, R. 2003 Experimental evidence of fluctuations and flows near marginal stability and dynamical interplay between gradients and transport in the JET plasma boundary region. J. Nucl. Mater. 313–316, 863867.CrossRefGoogle Scholar
Huang, R., Chavez, I., Taute, K.M., Lukić, B., Jeney, S., Raizen, M.G. & Florin, E.-L. 2011 Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7 (7), 576580.CrossRefGoogle Scholar
Kallman, J., Jaworski, M.A., Kaita, R., Kugel, H. & Gray, T.K. 2010 High density Langmuir probe array for NSTX scrape-off layer measurements under lithiated divertor conditions. Rev. Sci. Instrum. 81 (10), 10E117.CrossRefGoogle ScholarPubMed
Kamataki, K., Itoh, S.-I., Inagaki, S., Arakawa, H., Nagashima, Y., Yamada, T., Yagi, M., Fujisawa, A. & Itoh, K. 2010 ECRH superposition on linear cylindrical helicon plasma in the LMD-U. Plasma Fusion Res. 5, S2046.CrossRefGoogle Scholar
Killer, C., Narbutt, Y., Grulke, O., et al. & W7-X Team 2021 Turbulent transport in the scrape-off layer of Wendelstein 7-X. Nucl. Fusion 61 (9), 096038.CrossRefGoogle Scholar
Kolmogorov, A. 1941 a The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A.N. 1941 b Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16.Google Scholar
Krasheninnikov, S.I. 2001 On scrape off layer plasma transport. Phys. Lett. A 283 (5–6), 368370.CrossRefGoogle Scholar
Labit, B., Diallo, A., Fasoli, A., Furno, I., Iraji, D., Müller, S.H., Plyushchev, G., Podestà, M., Poli, F.M., Ricci, P., et al. 2007 Statistical properties of electrostatic turbulence in toroidal magnetized plasmas. Plasma Phys. Control. Fusion 49 (12B), B281B290.CrossRefGoogle Scholar
Lawson, J.D. 1957 Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70 (1), 610.CrossRefGoogle Scholar
Loizu, J., Ricci, P. & Theiler, C. 2011 Existence of subsonic plasma sheaths. Phys. Rev. E 83 (1), 016406.CrossRefGoogle ScholarPubMed
Militello, F., Fundamenski, W., Naulin, V. & Nielsen, A.H. 2012 Simulations of edge and scrape off layer turbulence in mega ampere spherical tokamak plasmas. Plasma Phys. Control. Fusion 54 (9), 095011.CrossRefGoogle Scholar
Militello, F. & Omotani, J.T. 2016 Scrape off layer profiles interpreted with filament dynamics. Nucl. Fusion 56 (10), 104004.CrossRefGoogle Scholar
Mosetto, A., Halpern, F.D., Jolliet, S., Loizu, J. & Ricci, P. 2013 Turbulent regimes in the tokamak scrape-off layer. Phys. Plasmas 20 (9), 092308.CrossRefGoogle Scholar
Naulin, V., Fundamenski, W., Nielsen, A.H., Rasmussen, J.J., Garcia, O.E., Gonçalves, B., Hidalgo, C., Hron, M. & JET-EFDA contributors. 2006 Turbulence modeling of JET SOL plasma. In Proceedings of the 21st IAEA Fusion Energy Conference, (Chengdu, China, 2006), TH/P6-22. Online at http://www.iop.org/Jet/fulltext/EFDC060519.pdf [2015-03-01].Google Scholar
Pecora, F., Servidio, S., Greco, A., Matthaeus, W.H., Burgess, D., Haynes, C.T., Carbone, V. & Veltri, P. 2018 Ion diffusion and acceleration in plasma turbulence. J. Plasma Phys. 84 (6), 725840601.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1996 Numerical Recipes in Fortran 90 the Art of Parallel Scientific Computing. Cambridge University Press.Google Scholar
Pusey, P.N. 2011 Brownian motion goes ballistic. Science 332 (6031), 802.CrossRefGoogle ScholarPubMed
Russell, D.A., Myra, J.R. & Stotler, D.P. 2019 A reduced model of neutral-plasma interactions in the edge and scrape-off-layer: verification comparisons with kinetic Monte Carlo simulations. Phys. Plasmas 26 (2), 022304.CrossRefGoogle Scholar
Sarazin, Y., Dif-Pradalier, G., Garbet, X., Ghendrih, P., Berger, A., Gillot, C., Grandgirard, V., Obrejan, K., Varennes, R., Vermare, L., et al. 2021 Key impact of phase dynamics and diamagnetic drive on Reynolds stress in magnetic fusion plasmas. Plasma Phys. Control. Fusion 63 (6), 064007.CrossRefGoogle Scholar
Sattin, F., Vianello, N., Valisa, M., Antoni, V. & Serianni, G. 2005 On the probability distribution function of particle density and flux at the edge of fusion devices. J. Phys.: Conf. Ser. 7, 247252.Google Scholar
Sechrest, Y., Munsat, T., D'Ippolito, D.A., Maqueda, R.J., Myra, J.R., Russell, D. & Zweben, S.J. 2011 Flow and shear behavior in the edge and scrape-off layer of L-mode plasmas in National Spherical Torus Experiment. Phys. Plasmas 18 (1), 012502.CrossRefGoogle Scholar
Servidio, S., Primavera, L., Carbone, V., Noullez, A. & Rypdal, K. 2008 A model for two-dimensional bursty turbulence in magnetized plasmas. Phys. Plasmas 15 (1), 012301.CrossRefGoogle Scholar
Stroth, U., Manz, P. & Ramisch, M. 2011 On the interaction of turbulence and flows in toroidal plasmas. Plasma Phys. Control. Fusion 53 (2), 024006.CrossRefGoogle Scholar
Tatali, R., Serre, E., Tamain, P., Galassi, D., Ghendrih, P., Nespoli, F., Bufferand, H., Cartier-Michaud, T. & Ciraolo, G. 2021 Impact of collisionality on turbulence in the edge of tokamak plasma using 3D global simulations. Nucl. Fusion 61 (5), 056002.CrossRefGoogle Scholar
Taylor, G.I. 1921 Diffusion by Continuous Movements. Proc. Lond. Math. Soc. 20, 196.Google Scholar
Taylor, J.B. & McNamara, B. 1971 Plasma diffusion in two dimensions. Phys. Fluids 14 (7), 14921499.CrossRefGoogle Scholar
Terry, P.W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72 (1), 109165.CrossRefGoogle Scholar
van Milligen, B.P.., Sánchez, R., Carreras, B.A., Lynch, V.E., LaBombard, B., Pedrosa, M.A., Hidalgo, C., Gonçalves, B. & Balbín, R. 2005 Additional evidence for the universality of the probability distribution of turbulent fluctuations and fluxes in the scrape-off layer region of fusion plasmas. Phys. Plasmas 12 (5), 052507.CrossRefGoogle Scholar
Van Oost, G., Adámek, J., Antoni, V., Balan, P., Boedo, J.A., Devynck, P., uran, I., Eliseev, L., Gunn, J.P., Hron, M., Ionita, C., et al. 2003 Turbulent transport reduction by ${\rm E}\times {\rm B}$ velocity shear during edge plasma biasing: recent experimental results. Plasma Phys. Control. Fusion 45 (5), 621643.CrossRefGoogle Scholar
Ware, A.S., Terry, P.W., Carreras, B.A. & Diamond, P.H. 1998 Turbulent heat and particle flux response to electric field shear. Phys. Plasmas 5 (1), 173177.CrossRefGoogle Scholar
Xu, Y.H., Jachmich, S., Weynants, R.R. & TEXTOR Team 2005 On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma Phys. Control. Fusion 47 (10), 18411855.CrossRefGoogle Scholar
Zweben, S.J., Myra, J.R., Davis, W.M., D'Ippolito, D.A., Gray, T.K., Kaye, S.M., LeBlanc, B.P., Maqueda, R.J., Russell, D.A., Stotler, D.P., et al. 2016 Blob structure and motion in the edge and SOL of NSTX. Plasma Phys. Control. Fusion 58 (4), 044007.CrossRefGoogle Scholar