Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T22:36:03.523Z Has data issue: false hasContentIssue false

Numerical analysis of monoenergetic electrons energy effect on dynamic potential profile of plasma sheath

Published online by Cambridge University Press:  10 January 2013

M. SHARIFIAN*
Affiliation:
Physics Department, Faculty of Science, Yazd University, P. O. Box 89195-741, Yazd, Iran (mehdi.sharifian@yazduni.ac.ir)

Abstract

The dynamic behavior of the electric potential distribution of a plasma sheath region in the presence of monoenergetic electrons with two different values of energy, larger (fast electrons) and smaller (slow electrons) than the cathode potential energy, is examined numerically by the finite difference method. Exploring and comparing the plots of numerical computation results shows that the time evolution of the non-monotonic potential distribution heavily depends on the energy of monoenergetic electrons.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bilek, M. M. M. 2001 J. Appl. Phys. 89, 923.CrossRefGoogle Scholar
Chu, P. K., Qin, S., Chan, C., Cheung, N. W. and Larson, L. A. 1996 Mater. Sci. Eng. R: Rep. 17, 207.CrossRefGoogle Scholar
Conrad, J., Radtke, J., Dodd, R., Worzala, F. J. and Tran, N. C. 1987 J. Appl. Phys. 62, 4591.CrossRefGoogle Scholar
Demidov, V., DeJoseph, C. Jr. and Kudryavtsev, A. 2005 Phys. Rev. Lett. 95, 215002.CrossRefGoogle Scholar
Emmert, G. and Henry, M. 1992 J. Appl. Phys. 71, 113.CrossRefGoogle Scholar
Ghomi, H. and Ghasemkhani, M. 2009 Vacuum 83, 1427.CrossRefGoogle Scholar
Ghomi, H., Gasemkhani, M. and Rostami, S. 2009 Vacuum 83(Supplement 1), S193.CrossRefGoogle Scholar
Ghomi, H., Sharifian, M., Niknam, A. R. and Shokri, B. 2006 J. Appl. Phys. 100, 113301.CrossRefGoogle Scholar
Ghomi, H., Sharifian, M. and Shokri, B. 2007 Vacuum 81, 1292.CrossRefGoogle Scholar
Gurovich, V. T., Gleizer, J. Z., Bliokh, Y. and Krasik, Y. E. 2006 Phys. Plasmas 13, 073506.CrossRefGoogle Scholar
Gyergyek, T., KovaCiC, J. and Cercek, M. 2010 Phys. Plasmas 17, 083504.CrossRefGoogle Scholar
Huang, Y. X., Tian, X. B., Yang, S. Q., Fu, R. K. Y. and Chu, P. K. 2007 Surf. Coat. Technol. 201, 5458.CrossRefGoogle Scholar
Ingram, S. and Braithwaite, N. 1990 J. Phys. D Appl. Phys. 23, 1648.CrossRefGoogle Scholar
Kwok, D., Bilek, M., McKenzie, D. and Chu, P. 2003 Appl. Phys. Lett. 82, 1827.CrossRefGoogle Scholar
Lacoste, A. and Pelletier, J. 2003 Nucl. Instrum. Methods Phys. Res. B: Beam Interactions with Materials and Atoms 208, 260.CrossRefGoogle Scholar
Lejars, A., Manova, D., Mandl, S., Duday, D. and Wirtz, T. 2010 J. Appl. Phys. 108, 063308.CrossRefGoogle Scholar
Li, X.-C., Tian, L.-C. and Wang, Y.-N. 2010 Vacuum 84, 1118.CrossRefGoogle Scholar
Li, X.-C. and Wang, Y.-N. 2007 Surf. Coat. Technol. 201, 6569.CrossRefGoogle Scholar
Li, Y., Zheng, B. C. and Lei, M. K. 2012 Vacuum 86, 1278.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. J. 1994 Principles of Plasma Discharges and Materials Processing. New York: Wiley.Google Scholar
Ma, X. X., Yukimura, K. and Muraho, T. 2003 Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 206, 787.CrossRefGoogle Scholar
Mändl, S., Brutscher, J., Günzel, R. and Möller, W. 1997 Surf. Coat. Technol. 93, 234.CrossRefGoogle Scholar
Masamune, S. and Yukimura, K. 2003 Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 206, 682.CrossRefGoogle Scholar
Meige, A., Jarnyk, M., Kwok, D. T. K. and Boswell, R. W. 2005 Phys. Plasmas 12, 043503.CrossRefGoogle Scholar
Mukherjee, S., Ranjan, M., Rane, R., Vaghela, N., Phukan, A. and Suraj, K. S. 2007 Surf. Coat. Technol. 201, 6502.CrossRefGoogle Scholar
Mukherjee, S., Raole, P. M. and John, P. I. 2002 Surf. Coat. Technol. 157, 111.CrossRefGoogle Scholar
Qi, S., Xinxin, M. and Lifang, X. 2000 Nucl. Instrum. Methods Phys. Res. B 170, 397.CrossRefGoogle Scholar
Rauschenbach, B. and Mändl, S. 2003 Nucl. Instrum. Methods Phys. Res. B 206, 803.CrossRefGoogle Scholar
Sakudo, N., Shinohara, T., Amaya, S., Endo, H., Okuji, S. and Ikenaga, N. 2006 Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 242, 349.CrossRefGoogle Scholar
Schott, L. 1987 Phys. Fluids 30, 1795.CrossRefGoogle Scholar
Sharifian, M. and Shokri, B. 2007 Phys. Plasmas 14, 093503.CrossRefGoogle Scholar
Sheridan, T. and Alport, M. 1994 Appl. Phys. Lett. 64, 1783.CrossRefGoogle Scholar
Sheridan, T., Kwok, T. and Chu, P. 1998 Appl. Phys. Lett. 72, 1826.CrossRefGoogle Scholar
Tian, X. B., Fu, K. Y., Chu, P. K. and Yang, S. Q. 2005 Surf. Coat. Technol. 196, 162.CrossRefGoogle Scholar
Tian, X., Gong, C., Huang, Y., Jiang, H., Yang, S., Fu, R. K. Y. and Chu, P. K. 2009 Surf. Coat. Technol. 203, 2727.CrossRefGoogle Scholar
Tian, X. B., Yang, S. Q., Huang, Y. X., Gong, C. Z., Xu, G. C., Fu, R. K. Y. and Chu, P. K. 2004 Surf. Coat. Technol. 186, 47.CrossRefGoogle Scholar
Yukimura, K. 2001 Surf. Coat. Technol. 136, 1.CrossRefGoogle Scholar
Zeng, Z. M., Kwok, T. K., Tian, X. B., Tang, B. Y. and Chu, P. K. 1999 Surf. Coat. Technol. 120–121, 663.CrossRefGoogle Scholar
Zhu, Z., Tian, X., Wang, Z., Gong, C., Yang, S., Fu, R. K. Y. and Chu, P. K. 2011 Surf. Coat. Technol. 206, 2021.CrossRefGoogle Scholar