Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T11:02:50.417Z Has data issue: false hasContentIssue false

Multimode theory of electron hole transverse instability

Published online by Cambridge University Press:  17 January 2023

Xiang Chen
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
I.H. Hutchinson*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: ihutch@mit.edu

Abstract

We present Vlasov–Poisson three-dimensional linear stability analysis of an initially planar electron hole structure, solving for the distribution function by integration along unperturbed orbits. The non-sinusoidal potential perturbation shape (parallel to $B$) is expanded in eigenfunctions of the adiabatic Poisson operator, generalizing the prior assumption of a rigid shift of the equilibrium. We show that the shiftmode is then modified by a second discrete mode plus an integral over a continuum of wave-like modes. A rigorous treatment shows that the continuum can be approximated effectively by a single mode that satisfies the external wave dispersion relation, thus making the perturbation a weighted sum of three modes. We find numerically the solution for the complex instability frequency, and the corresponding three mode amplitudes determining the perturbation eigenmode. This multimode analysis refines the accuracy of the prior single-mode results, giving slightly higher growth rates at most parameters, as expected from the extra mode shape freedom. Oscillating modes near stability boundaries have larger mode distortions which help explain particle-in-cell simulations that observe instability up to ${\sim }20$ % beyond the prior shiftmode thresholds, and narrowing of the perturbation. At high magnetic field, the multimode analysis predicts a reduction of the already small growth rate.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I.B., Greene, J.M. & Kruskal, M.D. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108 (4), 546550.CrossRefGoogle Scholar
Berthomier, M., Muschietti, L., Bonnell, J.W., Roth, I. & Carlson, C.W. 2002 Interaction between electrostatic whistlers and electron holes in the auroral region. J. Geophys. Res.: Space Phys. 107 (A12), 111.Google Scholar
Collantes, J.R. & Turikov, V.A. 1988 Stability of solitary bgk waves. Phys. Scr. 38, 825828.CrossRefGoogle Scholar
Dirac, P.A.M. 1958 The Principles of Quantum Mechanics, 4th edn. Clarendon Press.CrossRefGoogle Scholar
Dokgo, K., Woo, M., Choi, C.-R., Min, K.-W. & Hwang, J. 2016 Generation of coherent ion acoustic solitary waves in inhomogeneous plasmas by an odd eigenmode of electron holes. Phys. Plasmas 23 (9), 092107.CrossRefGoogle Scholar
Hutchinson, I.H. 2017 Electron holes in phase space: What they are and why they matter. Phys. Plasmas 24 (5), 055601.CrossRefGoogle Scholar
Hutchinson, I.H. 2018 a Kinematic mechanism of plasma electron hole transverse instability. Phys. Rev. Lett. 120 (20), 205101.CrossRefGoogle ScholarPubMed
Hutchinson, I.H. 2018 b Transverse instability of electron phase-space holes in multi-dimensional Maxwellian plasmas. J. Plasma Phys. 84, 905840411.CrossRefGoogle Scholar
Hutchinson, I.H. 2019 a Electron phase-space hole transverse instability at high magnetic field. J. Plasma Phys. 85 (5), 905850501.CrossRefGoogle Scholar
Hutchinson, I.H. 2019 b Transverse instability magnetic field thresholds of electron phase-space holes. Phys. Rev. E 99, 053209.CrossRefGoogle ScholarPubMed
Hutchinson, I.H. 2021 Asymmetric one-dimensional slow electron holes. Phys. Rev. E 104, 055207.CrossRefGoogle ScholarPubMed
Hutchinson, I.H. & Zhou, C. 2016 Plasma electron hole kinematics. I. Momentum conservation. Phys. Plasmas 23 (8), 82101.CrossRefGoogle Scholar
Jovanović, D. & Schamel, H. 2002 The stability of propagating slab electron holes in a magnetized plasma. Phys. Plasmas 9 (12), 50795087.CrossRefGoogle Scholar
Lewis, H.R. & Seyler, C. 1982 Stability of vlasov equilibria. Part 2. One ignorable coordinate. J. Plasma Phys. 27, 2535.CrossRefGoogle Scholar
Lewis, H.R. & Symon, K.R. 1979 Linearized analysis of inhomogeneous plasma equilibria: General theory. J. Math. Phys. 20 (1979), 413.CrossRefGoogle Scholar
Lotekar, A., Vasko, I.Y., Mozer, F.S., Hutchinson, I., Artemyev, A.V., Bale, S.D., Bonnell, J.W., Ergun, R., Giles, B., Khotyaintsev, Y.V., et al. 2020 Multisatellite mms analysis of electron holes in the earth's magnetotail: Origin, properties, velocity gap, and transverse instability. J. Geophys. Res.: Space Phys. 125 (9), e2020JA028066.CrossRefGoogle Scholar
Lu, Q.M., Lembege, B., Tao, J.B. & Wang, S. 2008 Perpendicular electric field in two-dimensional electron phase-holes: a parameter study. J. Geophys. Res. 113 (A11), A11219.Google Scholar
Newman, D.L., Goldman, M.V., Spector, M. & Perez, F. 2001 Dynamics and instability of electron phase-space tubes. Phys. Rev. Lett. 86 (7), 12391242.CrossRefGoogle ScholarPubMed
Oppenheim, M., Newman, D.L. & Goldman, M.V. 1999 Evolution of electron phase-space holes in a 2D magnetized plasma. Phys. Rev. Lett. 83 (12), 23442347.CrossRefGoogle Scholar
Oppenheim, M.M., Vetoulis, G., Newman, D.L. & Goldman, M.V. 2001 Evolution of electron phase-space holes in 3D. Geophys. Res. Lett. 28 (9), 18911894.CrossRefGoogle Scholar
Parlett, B.N. 1974 The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Maths Comput. 28 (127), 679693.CrossRefGoogle Scholar
Schamel, H. 1982 Stability of electron vortex structures in phase space. Phys. Rev. Lett. 48 (7), 481483.CrossRefGoogle Scholar
Schamel, H. 1987 On the stability of localized electrostatic structures. Z. Naturforsch. 42a, 11671174.CrossRefGoogle Scholar
Schwarzmeier, J.L., Lewis, H.R., Abraham-Shrauner, B. & Symon, K.R. 1979 Stability of Bernstein–Greene–Kruskal equilibria. Phys. Fluids 22 (9), 1747.CrossRefGoogle Scholar
Swanson, D.G. 1989 Plasma Waves. Academic Press.CrossRefGoogle Scholar
Symon, K.R., Seyler, C.E. & Lewis, H.R. 1982 Stability of vlasov equilibria. Part I. General theory. J. Plasma Phys. 27, 1324.CrossRefGoogle Scholar
Vetoulis, G. & Oppenheim, M. 2001 Electrostatic mode excitation in electron holes due to wave bounce resonances. Phys. Rev. Lett. 86 (7), 12351238.CrossRefGoogle ScholarPubMed
Zhou, C. & Hutchinson, I.H. 2017 Plasma electron hole ion-acoustic instability. J. Plasma Phys. 83, 90580501.Google Scholar