Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T09:20:11.141Z Has data issue: false hasContentIssue false

Low-frequency electrostatic waves in a magnetized, current-free, heavy negative ion plasma

Published online by Cambridge University Press:  14 November 2013

S. H. KIM
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)
R. L. MERLINO
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)
J. K. MEYER
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)
M. ROSENBERG
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

We report experimental observations of a low-frequency (≪ ion gyrofrequency) electrostatic wave mode in a magnetized cylindrical (Q machine) plasma containing positive ions, very few electrons and a relatively large fraction (n/ne > 103) of heavy negative ions (m/m+ ≈ 10), and no magnetic field-aligned current. The waves propagate nearly perpendicular to B with a multiharmonic spectrum. The maximum wave amplitude coincided spatially with the region of largest density gradient suggesting that the waves were excited by a drift instability in a nearly electron-free positive ion–negative ion plasma

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencesd

Choi, S. J. and Kushner, M. J. 1993 The role of negative ions in the formation of particles in low-pressure plasmas. J. Appl. Phys. 74, 853.CrossRefGoogle Scholar
Christophorou, L. G. and Olthoff, J. K. 2000 Electron interactions with F6. J. Phys. Chem. Ref. Data 29, 267.CrossRefGoogle Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. Jr and Sittler, E. C. Jr 2007 Discovery of heavy negative ions in Titan's ionosphere. Geophys. Res. Lett. 34, L22103.CrossRefGoogle Scholar
D'Angelo, N., Goeler, S. V. and Ohe, T. 1966 Propagation and damping of ion waves in a plasma with negative ions. Phys. Fluids 9, 1605.CrossRefGoogle Scholar
D'Angelo, N. and Merlino, R. L. 1986 Electrostatic ion-cyclotron waves in a plasma with negative ions. IEEE Trans. Plasma Sci. PS- 14, 285.CrossRefGoogle Scholar
D'Angelo, N., Pécseli, H. L. and Petersen, P. I. 1974 The Farley instability: a laboratory test. J. Geophys. Res. 79, 4747.CrossRefGoogle Scholar
Hahn, H. and Averback, R. S. 1990 The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 67, 1113.CrossRefGoogle Scholar
Howling, A. A., Dorier, J.-L. and Hollenstein, Ch. 1993 Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments. Appl. Phys. Lett. 62, 1341.CrossRefGoogle Scholar
Kim, S.-H., Heinrich, J. R. and Merlino, R. L. 2008 Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet. Space Sci. 56, 1552.CrossRefGoogle Scholar
Kim, S.-H. and Merlino, R. L. 2006 Charging of dust grains in a plasma with negative ions. Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
Kim, S.-H. and Merlino, R. L. 2007 Electron attachment to C7F14 and SF6 in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401.Google Scholar
Knist, S., Greiner, F., Biss, F. and Piel, A. 2011 Influence of negative ions on drift waves in a low-density AR/O2-plasma. Contrib. Plasma Phys. 51, 769.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2003 Charging of dust grains in a plasma with negative ions. Phys. Plasmas 10, 1518.CrossRefGoogle Scholar
Merlino, R. L. and Kim, S.-H. 2008 Measurement of the electron attachment rates for SF6 and C7F14 at Te = 0.2 eV in a magnetized Q machine plasma. J. Chem. Phys. 129, 224310.CrossRefGoogle Scholar
Narcisi, R. S., Bailey, A. D., Della Lucca, L., Sherman, C. and Thomas, D. M. 1971 Mass spectrometric measurements of negative ions in the D- and lower E-regions. J. Atmos. Terr. Phys. 33, 1147.CrossRefGoogle Scholar
Rapp, M., Hedin, J., Strelnikova, I., Friedrich, M., Gumbel, J. and Lübken, F.-J. 2005 Observations of positively charged nanoparticles in the nighttime polar mesosphere. Geophys. Res. Lett. 32, L23821.CrossRefGoogle Scholar
Reid, G. C. 1990 Ice particles and electron “bite-outs” at the summer polar mesopause. J. Geophys. Res. 95, 13, 891.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2009 Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma. J. Plasma Phys. 75, 495.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2013 Drift instability in a positive ion-negative ion plasma. J. Plasma Phys. 79, 949. doi:10.1017/S0022377813000858, Published online: 9 August 2013.Google Scholar
Sato, N. 1994 Production of negative ion plasmas in a Q machine. Plasma Sources Sci. Technol. 3, 395.CrossRefGoogle Scholar
Sheehan, D. P. and Rynn, N. 1988 Negative-ion plasma sources. Rev. Sci. Instrum. 59, 1369.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 2009 Drift wave excitation in a collisional dusty magnetoplasma with multi-ion species. J. Plasma Phys. 75, 153.CrossRefGoogle Scholar
Song, B., D'Angelo, N. and Merlino, R. L. 1991 Ion acoustic waves in a plasma with negative ions. Phys. Fluids B 3, 284.CrossRefGoogle Scholar
Song, B., Suszcynsky, D., D'Angelo, N. and Merlino, R. L. 1989 Electrostatic ion-cyclotron waves in a plasma with negative ions. Phys. Fluids B 1, 2316.CrossRefGoogle Scholar
Thomas, E., Merlino, R. L. and Rosenberg, M. 2012 Magnetized dusty plasmas: the next frontier in complex plasma research. Plasma. Phys. Control. Fusion 54, 124034.CrossRefGoogle Scholar
Wong, A. Y., Mamas, D. L. and Arnush, D. 1975 Negative ion plasmas. Phys. Fluids 18, 1489.CrossRefGoogle Scholar