Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:15:16.762Z Has data issue: false hasContentIssue false

Electromagnetic emission from laser wakefields in underdense magnetized plasmas

Published online by Cambridge University Press:  15 March 2012

Z. D. HU
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
Z. M. SHENG
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiaotong University, Shanghai, 200240, China (zmsheng@aphy.iphy.ac.cn)
W. J. DING
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
W. M. WANG
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
Q. L. DONG
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China
J. ZHANG
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing, 100190, China Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiaotong University, Shanghai, 200240, China (zmsheng@aphy.iphy.ac.cn)

Abstract

The laser wakefield structure in a magnetized underdense plasma is studied analytically and numerically. Because of the DC magnetic field perpendicular to the laser propagation direction, an electromagnetic component appears in addition to the normal electrostatic component. This electromagnetic component can transmit partially into vacuum at the plasma–vacuum boundary as shown by particle-in-cell simulation. It is found that the emission has components both at the fundamental plasma frequency and its harmonics if the wakefield is driven at a high amplitude. Comparing with the emission at the plasma frequency, the harmonic emission depends weakly upon the density profile at plasma–vacuum boundary and it can pass through the boundary almost without energy loss, providing a new method for the diagnostic of wakefields.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulanov, S. V., Pegoraro, F., Pukhov, A. M. and Sakharov, A. S. 1997 Transverse-wake wave breaking. Phys. Rev. Lett. 78, 42054208.CrossRefGoogle Scholar
Chen, F. F. 2007 Introduction to Plasma Physics. New York: Plenum Press.Google Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.Google Scholar
Hsieh, C. T., Huang, C. M., Chang, C. L., Ho, Y. C., Chen, Y. S., Lin, J. Y., Wang, J. and Chen, S. Y. 2006 Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96, 095001.CrossRefGoogle Scholar
Hu, Z. D., Sheng, Z. M., Ding, W. J., Wang, W. M., Dong, Q. L. and Zhang, J. in press Electromagnetic emission from laser wakefields driven in magnetized underdense plasmas. Plasma Sci. Technol.Google Scholar
Kostyukov, I., Kiselev, S. and Pukhov, A. 2003 X-ray generation in an ion channel. Phys. Plasmas 10, 48184828.CrossRefGoogle Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 Gev electron beams from a centimetre-scale accelerator. Appl. Phys. B 2, 696699.Google Scholar
Lu, W., Huang, C., Zhou, M., Mori, W. B. and Katsouleas, T. 2006 Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.CrossRefGoogle ScholarPubMed
Matlis, N. H., Reed, S., Bulanov, S. S., Chvykov, V., Kalintchenko, G., Matsuoka, T., Rousseau, P., Yandanovsky, V., Maksimchuk, A., Kalmykov, S. et al. 2006 Snapshots of laser wakefields. Nat. Phys. 2, 749753.CrossRefGoogle Scholar
Pukhov, A. and Meyer-ter Vehn, J. 2002 Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.Google Scholar
Rousse, A., Phuoc, K. T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J., Umstadter, D. et al. 2004 Production of a kev x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005.CrossRefGoogle ScholarPubMed
Sheng, Z. M., Meyer-ter Vehn, J. and Pukhov, A. 1998 Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse. Phys. Plasmas 5 (10), 37643773.CrossRefGoogle Scholar
Sheng, Z. M., Mima, K. and Zhang, J. 2005 Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103.CrossRefGoogle Scholar
Siders, C. W., LeBlanc, S. P. Blanc, S. P., Fisher, D., Tajima, T., Downer, M. C., Babine, A., Stepanov, A. and Sergeev, A. 1996 Laser wakefield excitation and measurement by femtosecond longitudinal interferometry. Phys. Rev. Lett. 76, 35703573.Google Scholar
Spence, N., Katsouleas, T., Muggli, P., Mori, W. B. and Hemker, R. 2001 Simulations of cerenkov wake radiation sources. Phys. Plasmas 8 (11), 49955005.CrossRefGoogle Scholar
Sprangle, P., Esarey, E. and Ting, A. 1990 Nonlinear interaction of intense laser pulses in plasmas. Appl. Phys. Lett. 41, 44634469.Google ScholarPubMed
Sprangle, P., Esarey, E., Ting, A. and Joyce, G. 1988 Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.Google Scholar
Wu, H. C., Sheng, Z. M., Dong, Q. L., Xu, H. and Zhang, J. 2007 Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys. Rev. E 75, 016407.CrossRefGoogle ScholarPubMed
Yoshii, J., Lai, C. H., Katsouleas, T., Joshi, C. and Mori, W. B. 1997 Radiation from cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 41944197.Google Scholar
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. and Katsouleas, T. 2002 Experimental observation of radiation from cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89, 065003.CrossRefGoogle Scholar