Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T06:45:51.441Z Has data issue: false hasContentIssue false

Effect of external magnetic field and dust grains on the properties of ion-acoustic waves

Published online by Cambridge University Press:  12 September 2023

K. Deka
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
R. Paul
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
G. Sharma
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
N. Das
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
S. Adhikari
Affiliation:
Institute for Energy Technology, Instituttveien 8, 2007 Kjeller, India
R. Moulick
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
S.S. Kausik*
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
B.K. Saikia
Affiliation:
Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782402, Assam, India
O.H. Chin
Affiliation:
Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
C.S. Wong
Affiliation:
Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
*
Email address for correspondence: kausikss@rediffmail.com

Abstract

An experimental study to investigate the effect of an external magnetic field on the propagation of ion-acoustic waves (IAWs) has been carried out in hydrogen plasma containing two-temperature electrons and dust grains. It is a first step in understanding the propagation properties of IAWs in such an environment. A low-pressure hot cathode discharge method is chosen for plasma production. The desired two-electron groups with distinct temperatures are achieved by inserting two magnetic cages with a cusp-shaped magnetic field of different surface field strengths in the same chamber. The dust grains are dropped into the plasma with the help of a dust dropper, which gain negative charges by interacting with the plasma. The IAWs are excited with the help of a mesh grid inserted into the plasma. A planar Langmuir probe is used as a detector to detect the IAWs. The time-of-flight technique has been applied to measure the phase velocity of the IAWs. The results suggest that in the presence of a magnetic field, the phase velocity of IAWs increases, whereas introducing the dust particles leads to the lower phase velocity. The magnetic field is believed to have a significant effect on the wave damping. This study will aid in utilising IAWs as a diagnostic tool to estimate plasma parameters in the presence of an external magnetic field.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeff, I. & Jones, W.D. 1965 Collisionless ion-wave propagation and the determination of the compression coefficient of plasma electrons. Phys. Rev. Lett. 15, 286288.CrossRefGoogle Scholar
Andersen, H.K., D'Angelo, N., Jensen, V.O., Michelsen, P. & Nielsen, P. 1968 Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves. Phys. Fluids 11 (6), 11771180.CrossRefGoogle Scholar
Barkan, A., D'Angelo, N. & Merlino, R.L. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44 (3), 239242.CrossRefGoogle Scholar
Buti, B. 1968 Ion acoustic waves in a collisional plasma. Phys. Rev. 165 (1), 195.CrossRefGoogle Scholar
Chow, V.W., Mendis, D.A. & Rosenberg, M. 1993 Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res.: Space Phys. 98 (A11), 1906519076.CrossRefGoogle Scholar
Chow, V.W., Mendis, D.A. & Rosenberg, M. 1994 Secondary emission from small dust grains at high electron energies. IEEE Trans. Plasma Sci. 22 (2), 179186.CrossRefGoogle Scholar
D'Angelo, N. & Merlino, R.L. 1996 Current-driven dust-acoustic instability in a collisional plasma. Planet. Space Sci. 44 (12), 15931598.CrossRefGoogle Scholar
Deka, K., Adhikari, S., Moulick, R., Kausik, S.S. & Saikia, B.K. 2021 Effect of collisions on the plasma sheath in the presence of an inhomogeneous magnetic field. Phys. Scr. 96 (7), 075606.CrossRefGoogle Scholar
Erents, S.K., Tagle, J.A., McCracken, G.M., Stangeby, P.C. & De Kock, L. 1986 Probe measurements of the density and temperature profiles in the jet plasma boundary. Nucl. Fusion 26 (12), 1591.CrossRefGoogle Scholar
Geller, D.K. & Weisheit, J.C. 1997 Classical electron-ion scattering in strongly magnetized plasmas. I. A generalized coulomb logarithm. Phys. Plasmas 4 (12), 42584271.CrossRefGoogle Scholar
Hadi, F. & Qamar, A. 2019 Kinetic study of dust ion acoustic waves in a nonthermal plasma. J. Phys. Soc. Japan 88 (3), 034501.Google Scholar
Hershkowitz, N. & Kim, Y.-C.G. 2008 Probing plasmas with ion acoustic waves. Plasma Sources Sci. Technol. 18 (1), 014018.CrossRefGoogle Scholar
Hosseini Jenab, S.M., Kourakis, I. & Abbasi, H. 2011 Phys. Plasmas 18 (7), 073703.CrossRefGoogle Scholar
Imazu, S. 1981 Collision frequency of charged particles in a weekly ionized gas in a strong magnetic field. Phys. Rev. A 23 (5), 2644.CrossRefGoogle Scholar
Jones, W.D., Lee, A., Gleman, S.M. & Doucet, H.J. 1975 Propagation of ion-acoustic waves in a two-electron-temperature plasma. Phys. Rev. Lett. 35, 13491352.CrossRefGoogle Scholar
Kakati, B., Kausik, S.S., Bandyopadhyay, M., Saikia, B.K. & Kaw, P.K. 2017 Development of a novel surface assisted volume negative hydrogen ion source. Sci. Rep. 7 (1), 112.CrossRefGoogle ScholarPubMed
Mahmood, S., Mushtaq, A. & Saleem, H. 2003 Ion acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas. New J. Phys. 5, 2828.CrossRefGoogle Scholar
Mamun, A.A. & Shukla, P.K. 2003 Charging of dust grains in a plasma with negative ions. Phys. Plasmas 10 (5), 15181520.CrossRefGoogle Scholar
Merlino, R.L. 2007 Understanding langmuir probe current-voltage characteristics. Am. J. Phys. 75 (12), 10781085.CrossRefGoogle Scholar
Merlino, R.L., Barkan, A., Thompson, C. & D'Angelo, N. 1997 Experiments on waves and instabilities in dusty plasmas. Plasma Phys. Control. Fusion 39 (5A), A421.CrossRefGoogle Scholar
Nakamura, Y. & Bailung, H. 1999 A dusty double plasma device. Rev. Sci. Instrum. 70 (5), 23452348.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. & Shukla, P.K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83 (8), 1602.CrossRefGoogle Scholar
Paul, R., Sharma, G., Deka, K., Adhikari, S., Moulick, R., Kausik, S.S. & Saikia, B.K. 2022 Experimental study of charging of dust grains in the presence of energetic electrons. Plasma Phys. Control. Fusion 64 (3), 035009.CrossRefGoogle Scholar
Pilling, L.S. & Carnegie, D.A. 2007 Validating experimental and theoretical langmuir probe analyses. Plasma Sources Sci. Technol. 16 (3), 570.CrossRefGoogle Scholar
Pitts, R.A. & Stangeby, P.C. 1990 Experimental tests of langmuir probe theory for strong magnetic fields. Plasma Phys. Control. Fusion 32 (13), 1237.CrossRefGoogle Scholar
Pustylnik, M., Ohno, N. & Takamura, S. 2006 Control of energetic electron component in a magnetically confined diffusion Ar plasma. Japan. J. Appl. Phys. 45 (2R), 926.CrossRefGoogle Scholar
Revans, R.W. 1933 The transmission of waves through an ionized gas. Phys. Rev. 44, 798802.CrossRefGoogle Scholar
Saikia, P., Saikia, B.K., Goswami, K.S. & Phukan, A. 2014 Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves. J. Vac. Sci. Technol. A: Vac. Surf. Films 32 (3), 031303.CrossRefGoogle Scholar
Santoso, J., Manoharan, R., O'Byrne, S. & Corr, C.S. 2015 Negative hydrogen ion production in a helicon plasma source. Phys. Plasmas 22 (9), 093513.CrossRefGoogle Scholar
Sharma, G., Adhikari, S., Moulick, R., Kausik, S.S. & Saikia, B.K. 2020 Effect of two temperature electrons in a collisional magnetized plasma sheath. Phys. Scr. 95 (3), 035605.CrossRefGoogle Scholar
Sharma, G., Deka, K., Paul, R., Adhikari, S., Moulick, R., Kausik, S.S. & Saikia, B.K. 2022 Experimental study on controlled production of two-electron temperature plasma. Plasma Sources Sci. Technol. 31 (2), 025013.CrossRefGoogle Scholar
Shukla, P.K. & Mamun, A.A. 2001 Introduction to Dusty Plasma Physics, p. 135. IOP Publishing.Google Scholar
Stangeby, P.C. 1982 Effect of bias on trapping probes and bolometers for tokamak edge diagnosis. J. Phys. D: Appl. Phys. 15 (6), 1007.CrossRefGoogle Scholar
Stanojević, M., Čerček, M., Gyergyek, T. & Jelić, N. 1994 Interpretation of a planar langmuir probe current–voltage characteristic in a strong magnetic field. Contrib. Plasma Phys. 34 (5), 607633.CrossRefGoogle Scholar
Tagle, J.A., Stangeby, P.C. & Erents, S.K. 1987 Errors in measuring electron temperatures using a single langmuir probe in a magnetic field. Plasma Phys. Control. Fusion 29 (3), 297.CrossRefGoogle Scholar
Thomson, J.J. & Thomson, G.P. 1933 Conduction of Electricity through Gases, Part II, p. 353. Cambridge University Press.Google Scholar
Tonks, L. & Langmuir, I. 1929 Oscillations in ionized gases. Phys. Rev. 33, 195210.CrossRefGoogle Scholar
Usoltceva, M., Faudot, E., Devaux, S., Heuraux, S., Ledig, J., Zadvitskiy, G.V., Ochoukov, R., Crombé, K. & Noterdaeme, J.-M. 2018 Effective collecting area of a cylindrical langmuir probe in magnetized plasma. Phys. Plasmas 25 (6), 063518.CrossRefGoogle Scholar
Wong, A.Y., Motley, R.W. & D'Angelo, N. 1964 Landau damping of ion acoustic waves in highly ionized plasmas. Phys. Rev. 133, A436A442.CrossRefGoogle Scholar