Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T05:06:44.642Z Has data issue: false hasContentIssue false

Effect of dust–dust interaction type on normal modes of two-dimensional dust crystals

Published online by Cambridge University Press:  16 May 2014

A. Bekda*
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers, Algeria
M. Djebli
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers, Algeria
*
Email address for correspondence: bekdahmed@yahoo.fr

Abstract

Dispersion relations for longitudinal and transverse dust lattice waves in two-dimensional hexagonal dust crystals of negatively charged particles were investigated and compared for two different interaction types, namely, Coulomb and screened Yukawa potentials. Results showed that the interaction type and the wave propagation direction change the characteristics of the dispersion relation as well as the group velocity. The screening parameter is also found to reduce the mode frequencies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekda, A., Djebli, M. and Beldjoudi, N. 2008 J. Plasma Phys. 74, 629.Google Scholar
Bonitz, M., Henning, C. and Bloch, D. 2010 Rep. Prog. Phys. 73, 066501.Google Scholar
Bourahla, B., Nafa, O., Khater, A. and Tigrine, R. 2011 Physica E 43, 1213.Google Scholar
Couêdel, L., Zhdanov, S. K., Ivlev, A. V., Nosenko, V., Thomas, H. M. and Morfil, G. E. 2011 Phys. Plasmas 18, 083707.CrossRefGoogle Scholar
Djebli, M., Issaad, M. and Rouaiguia, L. 2010 Phys. Plasmas 17, 033704.Google Scholar
Dubin, D. H. E. 1996 Phys. Rev. E 53, 5268.Google Scholar
Dubin, D. N. and Shiffer, J. P. 1996 Phys. Rev. E 53, 5249.Google Scholar
Farokhi, B., Kourakis, I. and Shukla, P. K. 2006a Phys. Plasmas 13, 122304.Google Scholar
Farokhi, B., Shukla, P. K. and Kourakis, I. 2006b Phys. Lett. A 255, 122.Google Scholar
Hartmann, P., Donkó, Z., Kalman, G. J. and Kyrkos, S. 2007 IEEE Trans. Plasma Sci. 35, 337.CrossRefGoogle Scholar
Heilmann, N., Peatross, J. B. and Bergeson, S. D. 2012 Phys. Rev. Lett. 109, 035002.Google Scholar
Khrapak, S. A., Klumov, B. and Morfill, G. E. 2008 Phys. Rev. Lett. 100, 225003.CrossRefGoogle Scholar
Kong, M., Partoens, B. and Peeters, F. M. 2002 Phys. Rev. E 65, 046602.CrossRefGoogle Scholar
Lôwen, H., Allodryarov, E., Ivlev, A. and Morfill, G. E. 2012 Phys. Condens. Matter 24, 284125.Google Scholar
Nunmora, S., Zhdarov, S. and Morfill, G. E. 2003 Phys. Rev. E 68, 026407.Google Scholar
Peetrs, F. M. and Wu, X. G. 1987 Phys. Rev. A 35, 3109.Google Scholar
Qiao, K., Matthews, L. S. and Hyde, T. W. 2010 IEEE Trans. Plasma Sci. 38, 823.Google Scholar
Redmer, R. 1997 Phys. Rep. 35, 282.Google Scholar
Redmer, R. and Rôpke, G. 2010 Contri. Plasma Phys. 50, 970.Google Scholar
Schollmeyer, H., Melzer, A., Homann, A. and Bel, A. 1999 Phys. Plasmas 7, 2693.Google Scholar
Stephens, J. and Neuber, A. 2012 Phys. Plasmas 19, 060072.Google Scholar
Tsytovich, V. N., Morfill, G. E., Vladimirov, S. V. and Thomas, H. M. 2008 Lecture Notes in Physics, Vol. 731. Berlin: Springer-Verlag. pp. j1.Google Scholar
Yang, F. X., Liu, Y., Cui, J. and Zhang, Y. 2012 Phys. Plasmas 19, 073709.Google Scholar
Yaroshenko, V. Y., Ivlev, A. V. and Morfill, G. E. 2005 Phys. Rev. E 71, 046405.Google Scholar
Zhdanov, S. K., Ivlev, A. V. and Morfil, G. E. 2009 Phys. Plasmas 16, 083706.Google Scholar