Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-15T17:12:21.007Z Has data issue: false hasContentIssue false

Development of a field-reversed configuration device using radio frequency antennas to produce E × B for current-drive

Published online by Cambridge University Press:  22 May 2024

Kiyong Lee*
Affiliation:
Plasma Technology Research Institute, Korea Institute of Fusion Energy, Gunsan, 54004, KR
Soo Ouk Jang
Affiliation:
Plasma Technology Research Institute, Korea Institute of Fusion Energy, Gunsan, 54004, KR
Seungryul Yoo
Affiliation:
Plasma Technology Research Institute, Korea Institute of Fusion Energy, Gunsan, 54004, KR
Kyu Dong Lee
Affiliation:
Korea Institute of Fusion Energy, Daejeon, 34133, KR
*
 Email address for correspondence: kylee@kfe.re.kr

Abstract

A unique field-reversed configuration (FRC) experiment is presently being assembled at the Plasma Technology Research Institute, KFE. It is a compact small-scale FRC device, which uses a set of radio frequency (RF) antennas to produce an internal E × B that drives the electrons for current-drive, in which E is the electric field and B is the magnetic field. This is very similar to the rotating magnetic field (RMF) current-drive, where the horizontal and vertical antennas are driven 90° out of phase. For this device, the RF antennas are arranged differently than the RMF. The RF antennas, being two separate sets, are positioned inside the vacuum chamber. Each set consists of 8 coils, for a total of 16 coils, where 80~100 kHz sine and cosine waveform currents are applied. One set of coils generates a radial B-field, while the other set provides an E-field in the z-direction. As the phase changes, the E and B fields are switched by these two sets. Nevertheless, E × B propagates in the same θ-direction so that this allows the electrons to rotate around the circumference of the device. The FRC device will test wave heating by launching 2.45 GHz microwaves. Also, passive stabilizers are positioned at each end to provide extra stability while preventing tilt instability. The experiment is expected to produce its first plasma in 2025.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Galea, C., Thomas, S., Paluszek, M. & Cohen, S. 2023 The Princeton Field-Reversed Configuration for Compact Nuclear Fusion Power Plants. Journal of Fusion Energy 42, 4.CrossRefGoogle Scholar
Gota, H., Binderbauer, M.W., Tajima, T., Putvinski, S., Tuszewski, M., Deng, B.H., Dettrick, S.A., Gupta, D.K., Korepanov, S., Magee, R.M., et al. 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device. Nucl. Fusion 59, 112009.CrossRefGoogle Scholar
Gota, H., Binderbauer, M.W., Tajima, T., Smirnov, A., Putvinski, S., Tuszewski, M., Dettrick, S.A., Gupta, D.K., Korepanov, S., Magee, R.M., et al. 2021 Overview of C-2W: high temperature, steady-state beam-driven field-reversed configuration plasmas. Nucl. Fusion 61, 106039.CrossRefGoogle Scholar
Guo, H.Y., Hoffman, A.L. & Milroy, R.D. 2007 Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling. Phys. Plasmas 14, 112502.CrossRefGoogle Scholar
Hoffman, A.L., Guo, H.Y., Miller, K.E. & Milroy, R.D. 2006 Principal physics of rotating magnetic-field current drive of field-reversed configurations. Phys. Plasmas 13, 012507.CrossRefGoogle Scholar
Ji, H., Belova, E., Gerhardt, S.P. & Yamada, M. 2007 Recent Advances in the SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques) Concept. Journal of Fusion Energy 26, 93-97.CrossRefGoogle Scholar
Kirtley, D. & Milroy, R. 2023 Fundamental Scaling of Adiabatic Compression of Field Reversed Configuration Thermonuclear Fusion Plasmas. Journal of Fusion Energy 42, 30.CrossRefGoogle Scholar
Miller, K.E., Grossnickle, J.A., Brooks, R.D., Deards, C.L., Dehart, T.E., Dellinger, M., Fishburn, M.B., Guo, H.Y., Hansen, B., Hayward, J.W., et al. 2008 The TCS upgrade: design, construction, conditioning, and enhanced RMF FRC performance. Fusion Science and Technology 54, 946-961.CrossRefGoogle Scholar
Milroy, R.D. & Miller, K.E. 2004 Edge-driven rotating magnetic field current drive of field-reversed configurations. Phys. Plasmas 11, 2.CrossRefGoogle Scholar
Shi, P., Ren, B., Zheng, J. & Sun, X. 2018 Formation of field-reversed configuration using an in-vessel odd-parity rotating magnetic field antenna in a linear device. Rev. Sci. Instrum. 89, 103502.CrossRefGoogle Scholar
Steinhauer, L.C. 2011 Review of field-reversed configurations. Phys. Plasmas 18, 070501.CrossRefGoogle Scholar
Tuszewski, M. 1988 Field reversed configurations. Nucl. Fusion 28, 2033.CrossRefGoogle Scholar
Yambe, K., Inomoto, M., Okada, S., Kobayashi, Y. & Asai, T. 2008 Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field. Phys. Plasmas 15, 092508.CrossRefGoogle Scholar
Yanai, R., Takahata, Y. & Inomoto, M. 2018 Development of new experimental setup focusing on long-pulse magnetic reconnection by using rotating magnetic field technique. Rev. Sci. Instrum. 89, 103506.CrossRefGoogle ScholarPubMed