Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-16T04:52:23.007Z Has data issue: false hasContentIssue false

Current driven electromagnetic ion cyclotron instability

Published online by Cambridge University Press:  13 March 2009

D. W. Forslund
Affiliation:
Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
J. M. Kindel
Affiliation:
Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545
M. A. Stroscio
Affiliation:
Los Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545

Abstract

When an electron distribution drifts relative to the ions along a d.c. magnetic field, it is known that, above some critical drift velocity, a nearly field-aligned electromagnetic ion cyclotron instability may be excited. We extend the study of this instability over wide variations in plasma parameters, ion β in particular, and beyond marginal stability.Above threshold the most unstable waves propagate very obliquely to the ambient d.c. magnetic field at wavenumbers of the order of an inverse ion Larmor radius. At low ion β the critical electron drift normalized to the ion thermal velocity scales inversely as β i- ½ while, for β i>10-2, the critical drift scales as the ion thermal velocity. For the Te≈Tielectromagnetic ion cyclotron instabifity begins to have a lower threshold than the corresponding electrostatic instability at β i≈me/Mi. In a moderately high β i, homogeneous, collisionless plasma the electromagnetic ion cyclotron instability appears to have the lowest threshold of any current driven instability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clemmow, P. C. & Dougherty, J. P., 1969, Electrodynamics of Particles and Plasmas, p. 286. Addison-Wesley.Google Scholar
Forslund, D. W., 1970 a Trans. Am. Geophys. Union, 51, 405.Google Scholar
Forslund, D. W., 1970 b J. Geophys. Res. 75, 17.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Kennel, C. F., 1971, UCLA Plasma Physics Group Report, PPG, 87.Google Scholar
Fried, B. D. & Contel, S. D., 1961, The Plasma Dispersion Function. Academic.Google Scholar
Fried, B. D., Kennel, C. F., Mackenzie, K., Corotniti, F. V., Kindel, J. M., Stenzel, R., Taylor, R. J., Whiter, R., Wong, A. Y., Bernstein, W., Sellen, J. M., Fors-Lund, D. & Sagdeev, R. Z., 1971, Plasma Physics and Controlled Nuclear Fusion Research, vol. 2, p. 55. International Atomic Energy Agency, Vienna.Google Scholar
Gaffey, J. D., Thompson, W. B. & Lic, C. S., 1972, J. Plasma Phys. 7, 189.CrossRefGoogle Scholar
Gary, S. P. & Forslund, D. W., 1975. Phys. Lett. A 54, 347.CrossRefGoogle Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M. D., 1975 a Geophys Res. Lett. 2, 79.CrossRefGoogle Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M.D., 1975 b, J.Geophys. Res. 80, 4197.CrossRefGoogle Scholar
Gary, S. P., Gerwin, R. A. & Forslund, D. W., 1976, Phys. Fluids, 19, 579CrossRefGoogle Scholar
Hasgawa, A., 1970 a Phys. Rev. Lett. 24, 1162.CrossRefGoogle Scholar
Hasegawa, A., 1970b Phys. Rev. Lett. 24, 1468.CrossRefGoogle Scholar
Hasegawa, A., 1975. Plasma Instabilities and Nonlinear Effects, §2.2b. Springer.CrossRefGoogle Scholar
Kindel, J. M., 1970, Ph.D. Thesis, UCLA.Google Scholar
Kindel, J. M. & Kennel, C. F., 1971, J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Lee, K. F. & Arsmtrong, R.C., 1971, Phys. Rev. Lett. 26, 77.CrossRefGoogle Scholar
Lominadze, P. G. & Stepanov, K. N., 1965, Soviet Phys. Tech. Phys. 9, 1408.Google Scholar
Mishin, E. V., 1974, Astrophys. Space Sci. 27, 367.CrossRefGoogle Scholar
Rodman, R. P., 1963, Commun. ACM, 6, 442.CrossRefGoogle Scholar
Schultz, M. & Eviatab, A., 1972, Cosmic Electrodynamics, 2, 402.Google Scholar
Stix, T. H., 1962, The Theory of Plasma Waves, pp. 202, 223. McGraw-Hill.Google Scholar
Swift, P. W., 1965, J. Geophys. Res. 70, 3061.CrossRefGoogle Scholar
Whitany, V.W., 1968, Commun.ACM, 11, 12.Google Scholar