Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T01:13:44.510Z Has data issue: false hasContentIssue false

Suppression of stimulated Raman scattering at ultra relativistic laser power: Effect of localization

Published online by Cambridge University Press:  17 May 2010

RUCHIKA GUPTA
Affiliation:
Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110025, India (ruchikaji81@gmail.com)
PRERANA SHARMA
Affiliation:
Government Ujjain Engineering College, Ujjain, Madhya Pradesh 456009, India
R. P. SHARMA
Affiliation:
Center for Energy Studies, Indian Institute of Technology, New Delhi 110016, India
M. RAFAT
Affiliation:
Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110025, India (ruchikaji81@gmail.com)

Abstract

The filamentation of the high-power laser beam is investigated by taking off axial contribution when relativistic nonlinearity is considered. The effect of filamentation of the laser beam is studied on the localization of the electron plasma wave (EPW) and on the stimulated Raman scattering (SRS). The semi-analytical solution of the nonlinearly coupled EPW equation in the presence of laser beam filaments has been found. It is observed that due to this nonlinear coupling between two waves, localization of EPW takes place. This localization of EPW affects the Eigen frequency and damping of plasma wave. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=1018 W cm−2) and plasma density n/ncr (=0.2); the SRS back reflectivity is found to be suppressed by a factor of approximately 8%.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Stenflo, L. 1970 J. Plasma Phys. 4, 585.CrossRefGoogle Scholar
[2]Kruer, W. L. 1988 The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
[3]Matthieussent, G. 1997 Plasma Phys. Control. Fusion 39, A161.CrossRefGoogle Scholar
[4]Stenflo, L. and Shukla, P. K. 2000 J. Plasma Phys. 64, 353.CrossRefGoogle Scholar
[5]Kaw, P. K., Schmidt, G. and Wilcox, T. 1973 Phys. Fluids 16, 1522.CrossRefGoogle Scholar
[6]Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B. and Danson, C. 1996 IEEE Trans. Plasma Sci. 24, 289.CrossRefGoogle Scholar
[7]Miyakoshi, T., Jovanovic, M. S., Kitagawa, Y., Kodama, R., Mima, K., Offenberger, A. A., Tanaka, K. A. and Yamanaka, T. 2002 Phys. Plasmas 9, 3552.CrossRefGoogle Scholar
[8]Kruer, W. L. 2000 Phys. Plasmas 7, 2270.CrossRefGoogle Scholar
[9]Dodd, E. S. and Umstadter, D. 2001 Phys. Plasmas 8, 8.CrossRefGoogle Scholar
[10]Estrabrook, K., Kruer, W. L. and Lasinski, B. F. 1980 Rev. Lett. 45, 17.Google Scholar
[11]Kirkwood, R. K., Moody, J. D., Niemann, C., Williams, E. A., Langdon, A. B., Landen, O. L., Divol, L. and Suter, L. S. 2006 Phys. Plasmas 13, 082703.CrossRefGoogle Scholar
[12]Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[13]Umstadter, D., Kim, J. K. and Dodd, E. 1996 Phys. Rev. Lett. 76, 2073.CrossRefGoogle Scholar
[14]Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
[15]Umstadter, D. and Norris, T. B. 1997 IEEE J. Quantum Electron. 33, 1877.CrossRefGoogle Scholar
[16]Drake, J. F., Kaw, P. K., Lee, Y. C., Schmid, G., Liu, C. S. and Rosenbluth, M. N. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
[17]Forslund, D. W., Kindel, J. M. and Lindman, E. L. 1975 Phys. Fluids 17, 1002.CrossRefGoogle Scholar
[18]Wilks, S. C., Kruer, W. L., Williams, E. A., Amendt, P. and Eder, D. C. 1995 Phys. Plasmas 2, 274.CrossRefGoogle Scholar
[19]Shvets, G., Wurtele, J. S. and Shadwick, B. A. 1997 Phys.Plasmas. 4, 1872.CrossRefGoogle Scholar
[20]Sakharov, A. S., Naumova, N. M. and Bulanov, S. V. 1998 Plasma Phys. Rep. 24, 818.Google Scholar
[21]Barr, H. C., Mason, P. and Parr, D. M. 1999 Phys. Rev. Lett. 83, 1606.CrossRefGoogle Scholar
[22]Dodd, E. S. and Umstadter, D. 2001 Phys. Plasmas 8, 3531.CrossRefGoogle Scholar
[23]Barr, H. C., Boyd, T. J. M. and Coutts, G. A. 1986 Phys. Rev. Lett. 56, 21.Google Scholar
[24]Russell, D. A., DuBois, D. F. and Rose, H. A. 1999 Phys. Plasmas 6, 1294.CrossRefGoogle Scholar
[25]Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V. T. and Baldis, H. A. 2000 Phys. Plasmas 7, 4659.CrossRefGoogle Scholar
[26]Rose, D. V., Guillory, J. U. and Beall, J. H. 2005 Phys. Plasmas 12, 014501.CrossRefGoogle Scholar
[27]Rozmus, W. 1990 Phys. Scr. T30, 64.CrossRefGoogle Scholar
[28]Mahmoud, S. T. and Sharma, R. P. 2000 J. Plasma Phys. 64, 613.CrossRefGoogle Scholar
[29]Sheng, Z. M., Mima, K., Sentoku, Y. and Nishihara, K. 2000 Phys. Rev E 61, 4.Google Scholar
[30]Bulanov, S. V., Pegoraro, F. and Pukhov, A. M. 1995 Phys. Rev. Lett. 74, 5.CrossRefGoogle Scholar
[31]Rozmus, W., Sharma, R. P., Samson, J. C. and Tighe, W. 1987 Phys. Fluids 30, 2181.CrossRefGoogle Scholar
[32]Gupta, R., Sharma, P., Chauhan, P. K., Rafat, M. and Sharma, R. P. 2009 Phys. Plasmas 16, 043101.CrossRefGoogle Scholar
[33]Shukla, P. K., Rao, N. N. and Yu, M. Y. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
[34]Sharma, R. P. and Chauhan, P. K. 2008 Phys. Plasmas 15, 063103.CrossRefGoogle Scholar
[35]Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York: McGraw-Hill.CrossRefGoogle Scholar
[36]Sharma, P. and Sharma, R. P. 2009 Phys. Plasmas 16, 032301.CrossRefGoogle Scholar
[37]Sharma, R. P., Sharma, P., Rajput, S. and Bhardwaj, A. K. 2009 Laser Part. Beams 27, 619.CrossRefGoogle Scholar
[38]Aldrich, C. H., Bezzrerides, B., DuBois, D. F. and Rose, H. 1986 Plasma Phys. Control. Fusion 10, 1.Google Scholar