Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-08T09:09:19.689Z Has data issue: false hasContentIssue false

Studies of strong laboratory double layers and comparison with computer simulation

Published online by Cambridge University Press:  13 March 2009

K. D. Baker
Affiliation:
Utah State University, Logan, USA
N. Singh
Affiliation:
Utah State University, Logan, USA
L. P. Block
Affiliation:
Department of Plasma Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
R. Kist
Affiliation:
Fraunhofer-Institut für Physikalische Messtechnik (IPM), Freiburg, FRG
W. Kampa
Affiliation:
Fraunhofer-Institut für Physikalische Messtechnik (IPM), Freiburg, FRG
H. Thiemann
Affiliation:
Fraunhofer-Institut für Physikalische Messtechnik (IPM), Freiburg, FRG

Abstract

Strong electrostatic double layers were produced with a triple plasma configuration in the large plasma chamber (5 m long, 2·5 m diameter) at IPM in Freiburg, Federal Republic of Germany. Owing to relatively low densities (1011 1012m−3), Debye lengths of a few centimetres and layer thicknesses of the order of a metre were obtained. Layers both with and without magnetic fields were studied. Analysis of particle spectra prove that wave-particle interactions play a minor role in maintaining the strong electric field. The three-dimensional potential distribution is measured and is qualitatively discussed in terms of particle budget. For cases with a magnetic field it tends to agree with observations above the aurora. Comparisons are made with double-layer theory and computer experiments, and general agreement is found as far as the available results allow.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aamodt, R. E. & Vella, M. C. 1977 Phys. Rev. Lett. 39, 1273.CrossRefGoogle Scholar
Alfvén, H. 1958 Tellus, 10, 104.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bezzerides, B. & Dubols, D. F. 1975 Phys. Rev. Lett. 34, 1381.CrossRefGoogle Scholar
Block, L. P. 1969 Report 69–30, Department of Plasma Physics, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
Block, L. P. 1972 Cosmic Electrodynamics, 3, 349.Google Scholar
Block, L. P. 1978 Astrophys. Space Sci. 55, 59.CrossRefGoogle Scholar
Brown, S. C. 1959 Basic Data of Plasma Physics. Wiley.Google Scholar
Coakley, P. & Hershkowitz, N. 1979 Phys. Fluids, 22, 1171.CrossRefGoogle Scholar
Coakley, P., Hershkowitz, N., Hubbard, R. & Joyce, G. 1978 Phys. Rev. Lett. 40, 230.CrossRefGoogle Scholar
Coakley, P., Johnson, L. & Hershkowitz, N. 1979 Phys. Lett. 70A, 425.CrossRefGoogle Scholar
Crawford, F. W. & Freeston, I. L. 1963 Proceedings of 6th International Conference on Phenomena in Ionized Gases, Paris, vol. 1, p. 461.Google Scholar
Cuperman, S., Roth, I. & Bernstein, W. 1976 J. Plasma Phys. 15, 309.CrossRefGoogle Scholar
Goertz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Goldstein, B., Care, W., Rosen, B. & Seidl, M. 1978 Phys. Fluids, 21, 1569.CrossRefGoogle Scholar
Gorney, D. J., Clarke, A., Croley, D., Fennell, J., Luhmann, J. & Mizera, P. 1980 Chapman Conference on High Latitude Electric Fields, Yosemite, California.Google Scholar
Haerendel, G., Rieger, E., Valenzuela, A., Föppl, H., Stenbaek-Nielsen, H. C. & Wescott, E. M. 1976 European Programmes on Sounding-Rocket and Balloon Research in the Auroral Zone, p. 115. ESA Report, ESA-SP.Google Scholar
Johnson, L. E. 1980 J. Plasma Phys. 23, 433.CrossRefGoogle Scholar
Joyce, G. & Hubbard, R. F. 1978 J. Plasma Phys. 20, 391.CrossRefGoogle Scholar
Kainer, S., Dawson, J. & Coffey, T. 1972 Phys. Fluids, 15, 2419.CrossRefGoogle Scholar
Knorr, G. & Goertz, C. K. 1974 Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
Krapchev, V. B. 1979 Phys. Rev. Lett. 42, 497.CrossRefGoogle Scholar
Keuer, W. L. 1972 Phys. Fluids, 15, 2423.CrossRefGoogle Scholar
Langmuir, I. 1929 Phys. Rev. 33, 954.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1534.CrossRefGoogle Scholar
Morales, G. J., Lee, Y. C. & White, R. B. 1974 Phys. Rev. Lett. 32, 457.CrossRefGoogle Scholar
Mozer, F. S., Carlson, C. N., Hudson, M. K., Torbert, R. B., Parody, B., Yatteau, J. & Kelley, M. C. 1977 Phys. Rev. Lett. 38, 292.CrossRefGoogle Scholar
Quon, B. H. & Wong, A. Y. 1976 Phys. Rev. Lett. 37, 1393.CrossRefGoogle Scholar
Schönhuber, M.-J. 1963 Z. angew. Phys. 15, 454.Google Scholar
Shawhan, S. D., Fälthammar, C.-G. & Block, L. P. 1978 J. Geophys. Res. 83, 1049.CrossRefGoogle Scholar
Singh, N. 1979 Phys. Lett. 75 A, 69.CrossRefGoogle Scholar
Singh, N. 1980 Plasma Phys. 22, 1.CrossRefGoogle Scholar
Singh, N., Kist, R., Thiemann, H. & Block, L. P. 1980 Plasma Phys. 22, 695.CrossRefGoogle Scholar
Singh, N. & Thiemann, H. 1980 a Phys. Lett. A, 76A, 383.CrossRefGoogle Scholar
Singh, N. & Thiemann, H. 1980 b Geophys. Res. Lett. 7, 737.CrossRefGoogle Scholar
Thode, L. E. & Sudan, R. N. 1973 Phys. Rev. Lett. 30, 732.CrossRefGoogle Scholar
Thomson, J. J., Faehl, R. J. & Kruer, W. L. 1973 Phys. Rev. Lett. 31, 918.CrossRefGoogle Scholar
Torvén, S. & Babić, M. 1975 Proceedings of 12th International Conference on Phenomena in Ionized Gases, Eindhoven, vol. 1, p. 124.Google Scholar
Torvén, S. & Andersson, D. 1979 J. Phys. D: Appl. Phys. 12, 717.CrossRefGoogle Scholar
Torvén, S. & Lindberg, L. 1980 Report. TRITA-EPP-80–02, Department of Plasma Physics, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
Valeo, E. J. & Kruer, W. L. 1974 Phys. Rev. Lett. 33, 750.CrossRefGoogle Scholar
Wescott, E. M., Stenbaek-Nielsen, H. C., Hallinan, T. J., Davis, T. N. & Peek, H. M. 1976 J. Geophys. Res. 81, 4495.CrossRefGoogle Scholar
Wong, A. Y. 1977 J. de Physique, 38, 6.Google Scholar