Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-22T22:14:12.178Z Has data issue: false hasContentIssue false

Solitary waves in asymmetric electron–positron–ion plasmas

Published online by Cambridge University Press:  13 July 2015

Ding Lu
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
Zi-Liang Li
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
Bai-Song Xie*
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China Beijing Radiation Center, Beijing 100875, PR China
Email address for correspondence:


By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron–positron plasma and/or electron–positron–ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions’ mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron–positron plasmas and decrease also with ion concentration.

Research Article
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Begelman, M. C. 1988 Theory of AGN continuum radiation. In Active Galactic Nuclei (ed. Miller, H. R. & Witta, P. J.), Lecture Notes in Physics, vol. 307, pp. 202216. Springer.Google Scholar
Berezhiani, V. I., El-Ashry, M. Y. & Mofiz, U. A. 1994 Theory of strong-electromagnetic-wave propagation in an electron–positron–ion plasma. Phys. Rev. E 50, 448.Google Scholar
Berezhiani, V. I. & Mahajan, S. M. 1994 Large amplitude localized structures in a relativistic electron–positron ion plasma. Phys. Rev. Lett. 73, 1110.CrossRefGoogle Scholar
Berezhiani, V. I. & Mahajan, S. M. 1995 Large relativistic density pulses in electron–positron–ion plasmas. Phys. Rev. E 52, 1968.Google ScholarPubMed
Berezhiani, V. I., Mahajan, S. M. & Shatashvili, N. L. 2010a Stable localized electromagnetic pulses in asymmetric pair plasmas. J. Plasma Phys. 76, 467476.Google Scholar
Berezhiani, V. I., Mahajan, S. M. & Shatashvili, N. L. 2010b Stable optical vortex solitons in pair plasmas. Phys. Rev. A 81, 053812.Google Scholar
Berezhiani, V. I., Tskhakaya, D. D. & Shukla, P. K. 1992 Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46, 6608.CrossRefGoogle Scholar
Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. & Shukla, P. K. 2006 Electrostatic mode envelope excitations in e–p–i plasmas – application in warm pair ion plasmas with a small fraction of stationary ions. J. Phys. A: Math. Gen. 39, 13 817.CrossRefGoogle Scholar
Gibbons, G. W., Hawking, S. W. & Siklos, S. 1983 The Very Early Universe. Cambridge University Press.Google Scholar
Greaves, R. G. & Surko, C. M. 1995 An electron–positron beam–plasma experiment. Phys. Rev. Lett. 75, 3846.Google Scholar
Lehmann, G. & Spatschek, K. H. 2011 Poincaré analysis of wave motion in ultrarelativistic electron–ion plasmas. Phys. Rev. E 83, 036401.Google ScholarPubMed
Lu, D., Li, Z. L., Abdukerim, N. & Xie, B. S. 2014 Solitary and shock waves in magnetized electron–positron plasma. Phys. Plasmas 21, 022108.CrossRefGoogle Scholar
Lu, D., Li, Z. L. & Xie, B. S. 2013 Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron–positron–ion plasma. Phys. Rev. E 88, 033109.Google ScholarPubMed
Mahajan, S. M. & Shatashvili, N. L. 2008 Wave localization and density bunching in pair ion plasmas. Phys. Plasmas 15, 100701.CrossRefGoogle Scholar
Mahajan, S. M., Shatashvili, N. L. & Berezhiani, V. I. 2009 Asymmetry-driven structure formation in pair plasmas. Phys. Rev. E 80, 066404.Google Scholar
Mahmood, S. & Saleem, H. 2003 Nonlinear slow shear Alfvén wave in electron–positron–ion plasmas. Phys. Plasmas 10, 4680.CrossRefGoogle Scholar
Mahmood, S. & Ur-Rehman, H. 2009 Electrostatic solitons in unmagnetized hot electron–positron–ion plasmas. Phys. Lett. A 373, 22552259.CrossRefGoogle Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.Google Scholar
Popel, S. I., Vladimirov, S. V. & Shukla, P. K. 1995 Ion-acoustic solitons in electron–positron–ion plasmas. Phys. Plasmas 2, 716.Google Scholar
Shukla, P. K., Eliasson, B. & Stenflo, L. 2011 Electromagnetic solitary pulses in a magnetized electron–positron plasma. Phys. Rev. E 84, 037401.Google Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. & Tsintsadze, N. L. 1986 Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Verheest, F. & Cattaert, T. 2004 Large amplitude solitary electromagnetic waves in electron–positron plasmas. Phys. Plasmas 11, 3078.Google Scholar
Xie, B. S., Li, Z. L., Lu, D. & Sang, H. B. 2013 On existence of solitary waves in unmagnetized neutral hot pair plasma. Phys. Plasmas 20, 112109.CrossRefGoogle Scholar
Zank, G. P. & Greaves, R. G. 1995 Linear and nonlinear modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 51, 6079.Google Scholar