Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-fm8r5 Total loading time: 0.26 Render date: 2021-06-24T15:20:40.429Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Self-similar expansion of adiabatic electronegative dusty plasma

Published online by Cambridge University Press:  16 November 2017

M. Shahmansouri
Affiliation:
Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349, Iran
A. Bemooni
Affiliation:
Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349, Iran
A. A. Mamun
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
Corresponding
E-mail address:

Abstract

The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index  $\unicode[STIX]{x1D6FE}$ ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Akbari-Moghanjoughi, M. 2015 Self-similar and diffusive expansion of nonextensive plasmas. Phys. Plasmas 22, 032302.CrossRefGoogle Scholar
Anisimov, S. I., B’Duerle, D. & Luk’Yanchuk, B. S. 1993 Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys. Rev. B 48, 12076.CrossRefGoogle ScholarPubMed
Anisimov, S. I., Luk’Yanchuk, B. S. & Luches, A. 1996 An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime. Appl. Surf. Sci. 96, 24.CrossRefGoogle Scholar
Baitin, A. V. & Kuzanyan, K. M. 1998 A self-similar solution for expansion into a vacuum of a collisionless plasma bunch. J. Plasma Phys. 59, 83.CrossRefGoogle Scholar
Barenblatt, G. J. 1979 Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau.CrossRefGoogle Scholar
Bennaceur-Doumaz, D., Bara, D., Benkhelifa, E. & Djebli, M. 2015 Effects of nonthermal electrons on plasma expansion into vacuum. J. Appl. Phys. 117, 043303.CrossRefGoogle Scholar
Bharuthram, R. & Rao, N. N. 1995 Self-similar expansion of a warm dusty plasma – I. Unmagnetized case. Planet. Space Sci. 43, 1079.CrossRefGoogle Scholar
Boella, E., Peiretti Paradisi, B., D’Angola, A., Silva, L. O. & Coppa, G. 2016 Study on Coulomb explosions of ion mixtures. J. Plasma Phys. 82, 905820110.CrossRefGoogle Scholar
Ceccherini, F., Betti, S., Cornolti, F. & Pegoraro, F. 2006 Expansion of planar and spherical plasma bunches. Laser Phys. 16, 594.CrossRefGoogle Scholar
Chan, C., Hershkowitz, N., Ferreira, A., Intrator, T., Nelson, B. & Lonngren, K. E. 1984 Experimental observations of self-similar plasma expansion. Phys. Fluids 27, 266.CrossRefGoogle Scholar
Chutov, Y. I., Kravchenko, A. Y. & Schram, P. P. J. M. 1996a Expansion of a bounded plasma with dust particles. J. Plasma Phys. 55, 87.CrossRefGoogle Scholar
Chutov, Y. I., Kravchenko, A. Y. & Schram, P. P. J. M. 1996b Evolution of an expanding plasma with dust particles. Physica B 228, 11.CrossRefGoogle Scholar
Coppa, G., D’Angola, A. & Mulas, R. 2011 A simple model for the dynamics of the electrons in a spherical plasma irradiated by a laser pulse. Math. Comput. Model. 54, 2479.CrossRefGoogle Scholar
Crow, J. E., Auer, P. L. & Allen, J. E. 1975 The expansion of a plasma into a vacuum. J. Plasma Phys. 14, 65.CrossRefGoogle Scholar
D’Angola, A., Boella, E. & Coppa, G. 2014 On the applicability of the standard kinetic theory to the study of nanoplasmas. Phys. Plasmas 21, 082116.Google Scholar
Dawson, J. 1964 On the production of plasma by giant pulse lasers. Phys. Fluids 7, 981.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Rubenchik, A. M., Falcone, R. W. & Perry, M. D. 1996 Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379.CrossRefGoogle ScholarPubMed
Ditmire, T., Tisch, J. W. G., Springate, E., Mason, M. B., Hay, N., Smith, R. A., Marangos, J. & Hutchinson, M. H. R. 1997 High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54.CrossRefGoogle Scholar
Djebli, M. 2010 Cosmic dust-laden plasma expansion: the role of charged impurities. Phys. Scr. 81, 025902.CrossRefGoogle Scholar
Djebli, M., Annou, R. & Houssine, Z. T. 2001 Dusty plasma expansion with a variable charge in a spherical configuration. Phys. Plasmas 8, 1493.CrossRefGoogle Scholar
Dorozhkina, D. S. & Semenov, V. E. 1998 Exact solution of Vlasov equations for quasineutral expansion of plasma bunch into vacuum. Phys. Rev. Lett. 81, 2691.CrossRefGoogle Scholar
Doggett, B. & Lunney, J. G. 2011 Expansion dynamics of laser produced plasma. J. Appl. Phys. 109, 093304.CrossRefGoogle Scholar
El-Zein, Y., Amin, A., Kim, H. S., Yi, S. & Lonngren, K. E. 1995 Expansion of a negative ion plasma into a vacuum. Phys. Plasmas 2, 1073.CrossRefGoogle Scholar
Farnsworth, A. V., Widner, M. M., Clauser, M. J., Mcdaniel, P. J. & Lonngren, K. E. 1979 Self-similar power-driven expansion into vacuum. Phys. Fluids 22, 859.CrossRefGoogle Scholar
Fermous, R., Bennaceur-Doumaz, D. & Djebli, M. 2012 A one-dimensional plume plasma expansion: self-similar approach. Phys. Lett. A 376, 500.CrossRefGoogle Scholar
Goree, J. 1994 Charging of particles in a plasma. Plasma Sources Sci. Technol. 3, 400.CrossRefGoogle Scholar
Gurevich, A. V., Pariiskaya, L. V. & Pitaevskii, L. P. 1966 Self-similar motion of rarefied plasma. J. Expl Theor. Phys. 22, 449.Google Scholar
Huang, Y., Bi, Y., Duan, X., Wang, N., Tang, X. & He, Y. 2008 Relativistic plasma expansion with Maxwell–Juttner distribution. Appl. Phys. Lett. 92, 031501.Google Scholar
Kovalev, V. F. & Bychenkov, V. Y. 2003 Analytic solutions to the Vlasov equations for expanding plasmas. Phys. Rev. Lett. 90, 185004.CrossRefGoogle ScholarPubMed
Laha, S., Gupta, P., Simien, C. E., Gao, H., Castro, J. & Killian, T. C. 2007 Experimental realization of an exact solution to the Vlasov equations for an expanding plasma. Phys. Rev. Lett. 99, 155001.CrossRefGoogle ScholarPubMed
Landau, L. D. & Lifschitz, E. M. 1966 Lehrbuch der theoretischen Physik. Akademie.Google Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Lonngren, K. E. 1990 Expansion of a dusty plasma into a vacuum. Planet. Space Sci. 38, 1457.CrossRefGoogle Scholar
Luo, H. & Yu, M. Y. 1992 Kinetic theory of self-similar expansion of a dusty plasma. Phys. Fluids B 4, 1122.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V. Y. 2000 Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 4108.CrossRefGoogle ScholarPubMed
Mamun, A. A. 2008a Electrostatic solitary structures in a dusty plasma with dust of opposite polarity. Phys. Rev. E 77, 026406.Google Scholar
Mamun, A. A. 2008b Effects of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves. Phys. Lett A 372, 1490.CrossRefGoogle Scholar
Mamun, A. A. 2008c Dust–electron-acoustic shock waves due to dust charge fluctuation. Phys. Lett A 372, 4610.CrossRefGoogle Scholar
Manfredi, G. & Hervieux, P.-A. 2012 Adiabatic cooling of trapped non-neutral plasmas. Phys. Rev. Lett. 109, 255005.CrossRefGoogle ScholarPubMed
McQuillen, P., Strickler, T., Langin, T. & Killian, T. C. 2015 Ion temperature evolution in an ultracold neutral plasma. Phys. Plasmas 22, 033513.CrossRefGoogle Scholar
Perego, M., Howell, P. D., Gunzburger, M. D., Ockendon, J. R. & Allen, J. E. 2013 The expansion of a collisionless plasma into a plasma of lower density. Phys. Plasmas 20, 052101.CrossRefGoogle Scholar
Perry, M. D. & Mourou, G. 1994 Terawatt to petawatt subpicosecond lasers. Science 264, 917.CrossRefGoogle ScholarPubMed
Pillay, S. R., Singh, S. V., Bharuthram, R. & Yu, M. Y. 1997 Self-similar expansion of dusty plasmas. J. Plasma. Physics 58, 467.CrossRefGoogle Scholar
Sack, C. H. & Schamel, H. 1987 Plasma expansion into vacuum – a hydrodynamic approach. Phys. Rep. 156, 311.CrossRefGoogle Scholar
Saul, L., Wurz, P. & Kallenbach, R. 2009 A measurement of the adiabatic cooling index for interstellar helium pickup ions in the inner heliosphere. Astrophys. J. 703, 325.CrossRefGoogle Scholar
Shahmansouri, M. 2013 Influence of suprathermality on the obliquely propagating dust-acoustic solitary waves in a magnetized dusty plasma. Astrophys. Space Sci. 344, 153.CrossRefGoogle Scholar
Shahmansouri, M. 2014 Dynamics of dust-ion acoustic shock waves in a magnetized charge variable superthermal complex plasma. Phys. Scr. 89, 075604.CrossRefGoogle Scholar
Shahmansouri, M. & Alinejad, H. 2015 The polarized Debye sheath effect on Kadomtsev–Petviashvili electrostatic structures in strongly coupled dusty plasma. Phys. Plasmas 22, 043704.CrossRefGoogle Scholar
Shahmansouri, M., Farokhi, B. & Ashouri, H. 2015 Shock structures in charge variable dusty plasmas with effect of strongly coupled dust particles. Comm. Theor. Phys. 63, 367.Google Scholar
Shahmansouri, M. & Mamun, A. A. 2014a Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma. Phys. Plasmas 21, 033704.CrossRefGoogle Scholar
Shahmansouri, M. & Mamun, A. A. 2014b Dust-acoustic shock waves in a magnetized non-thermal dusty plasma. J. Plasma Phys. 80, 593.CrossRefGoogle Scholar
Shahmansouri, M. & Mamun, A. A. 2016 Generalized polarization force acting on charge fluctuating dust grains and its effects on propagation of dust-acoustic waves in a dusty plasma. Eur. Phys. J. Plus 131, 321.CrossRefGoogle Scholar
Shahmansouri, M. & Rezaei, M. 2014 Shock structures in dusty plasma in the presence of strong electrostatic interaction. Astrophys. Space Sci. 351, 197.CrossRefGoogle Scholar
Shahmansouri, M. & Tribeche, M. 2013 Nonextensive dust acoustic shock structures in complex plasmas. Astrophys. Space Sci. 346, 165.CrossRefGoogle Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IOP.CrossRefGoogle Scholar
Singh, R. K. & Narayan, J. 1990 Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys. Rev. B 41, 8843.CrossRefGoogle ScholarPubMed
Symes, D. R., Hohenberger, M., Henig, A. & Ditmire, T. 2007 Anisotropic explosions of hydrogen clusters under intense femtosecond laser irradiation. Phys. Rev. Lett. 98, 123401.CrossRefGoogle ScholarPubMed
Varma, R. K., Shukla, P. K. & Krishan, V. 1993 Electrostatic oscillations in the presence of grain-charge perturbations in dusty plasmas. Phys. Rev. E 47, 3612.Google ScholarPubMed
Yu, M. Y. & Luo, H. 1992 Self-similar motion of a dusty plasma. Phys. Lett. A 161, 506.CrossRefGoogle Scholar
Yu, M. Y. & Luo, H. 1995 Adiabatic self-similar expansion of dust grains in a plasma. Phys. Plasmas 2, 591.CrossRefGoogle Scholar
Zeldovich, Y. B. & Raizer, Y. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Academic Press.Google Scholar
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-similar expansion of adiabatic electronegative dusty plasma
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-similar expansion of adiabatic electronegative dusty plasma
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-similar expansion of adiabatic electronegative dusty plasma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *