Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T17:51:53.107Z Has data issue: false hasContentIssue false

Modulational instability of the interacting electron whistlers and magnetosonic perturbations

Published online by Cambridge University Press:  28 February 2024

Jiao-Jiao Cheng*
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China
Fang-Ping Wang
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China
Zhong-Zheng Li
Department of Physics, Gansu Normal University For Nationalities, Hezuo 747000, PR China
Wen-Shan Duan*
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China
Email addresses for correspondence:,
Email addresses for correspondence:,


A modulational instability of nonlinearly interacting electron whistlers and magnetosonic perturbations is studied in the present paper. For typical parameters, there is no modulational instability. However, modulational instability appears in special cases. For example, when the whistler wavenumber is small enough, there is modulational instability. Its growth rate decreases as the angle between the external magnetic field and the perturbed wave's direction increases, while it increases as the whistler wavenumber increases. It is also found that there is no modulational instability when the whistler wavenumber is larger than a critical value ($k_0 > 0.05$), in which the perturbed wave frequency increases as the angle between the external magnetic field and the perturbed wave's direction increases when the angle between the external magnetic field and the perturbed wave's direction is large enough. Whereas, the perturbed wave frequency first increases as the whistler wavenumber increases, reaches a peak value and then decreases as whistler wavenumber increases.

Research Article
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bell, T., Inan, U., Bortnik, J. & Scudder, J. 2002 The landau damping of magnetospherically reflected whistlers within the plasmasphere. Geophys. Res. Lett. 29 (15), 1733.CrossRefGoogle Scholar
Choi, S., Bessho, N., Wang, S., Chen, L. & Hesse, M. 2022 Whistler waves generated by nongyrotropic and gyrotropic electron beams during asymmetric guide field reconnection. Phys. Plasmas 29, 012903.CrossRefGoogle Scholar
Das, A., Singh, R., Kaw, P. & Champeaux, S. 2002 Nonlinear coupling of whistler wave turbulence with magnetosonic perturbations. Phys. Plasmas 9, 26092618.CrossRefGoogle Scholar
Eliasson, B. & Shukla, P. 2005 a Linear self-focusing of whistlers in plasmas. New J. Phys. 7, 95.CrossRefGoogle Scholar
Eliasson, B. & Shukla, P. 2005 b Three-dimensional dynamics of nonlinear whistlers in plasmas. Phys. Lett. A 348, 5157.CrossRefGoogle Scholar
Fujimoto, K. & Sydora, R. 2008 Whistler waves associated with magnetic reconnection. Geophys. Res. Lett. 35, L19112.CrossRefGoogle Scholar
Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253269.Google Scholar
Gupta, N., Choudhry, S. & Bhardwaj, S. 2023 Plasma crystal. Appl. Spectrosc. 89 (6), 11681176.CrossRefGoogle Scholar
Gurovich, V. & Karpman, V. 1969 Dynamics of electroacoustic waves in fluids and plasma. Sov. Phys. JETP 29 (6), 10481055.Google Scholar
Gushchin, M., Korobkov, S., Kostrov, A. & Strikovsky, A. 2004 Compression of whistler waves in a plasma with a nonstationary magnetic field. J. Expl Theor. Phys. 99 (5), 978986.CrossRefGoogle Scholar
Gushchin, M., Korobkov, S., Kostrov, A., Strikovsky, A. & Zaboronkova, T. 2005 Propagation of whistlers in a plasma with a magnetic field duct. JETP Lett. 81 (5), 214217.CrossRefGoogle Scholar
Horne, R., Thorne, R., Shprits, Y., Meredith, N., Glauert, S., Smith, A., Kanekal, S., Baker, D., Engebretson, M., Posch, J., et al. 2005 Wave acceleration of electrons in the van allen radiation belts. Nature 437, 227230.CrossRefGoogle ScholarPubMed
Hoshino, M., Mukai, T., Terasawa, T. & ShinoharaRao, I. 2001 Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res. 106 (A11), 2597925997.CrossRefGoogle Scholar
Huang, G., Wang, D. & Song, Q. 2004 Whistler waves in freja observations. J. Geophys. Res. 109, A02307.Google Scholar
Inan, U. 1987 Waves and instabilities. Rev. Geophys. 25 (3), 588598.CrossRefGoogle Scholar
Karpman, V., Kaufman, R. & Shagalov, A. 1992 Self-focusing of whistler waves. Phys. Plasmas 4, 30873100.Google Scholar
Karpman, V., Lynov, J., Michelsen, P. & Juul, R. 1995 Nonlinear evolution of whistler wave modulational instability. Phys. Plasmas 2, 33023319.CrossRefGoogle Scholar
Karpman, V. & Shagalov, A. 1984 Self-focusing and the two-dimensional collapse of whistlers. Sov. Phys. JETP 87, 422432.Google Scholar
Kivshar, Y. 1992 Modnlational instabilities in discrete lattices. Phys. Rev. A 46 (6), 31983205.CrossRefGoogle ScholarPubMed
Kostrov, A., Gushchin, M., Korobkov, S. & Strikovski, A. 2003 Parametric transformation of the amplitude and frequency of a whistler wave in a magnetoactive plasma. J. Expl Theor. Phys. 78 (9), 538541.CrossRefGoogle Scholar
Li, S., Zhang, S., Cai, H., Deng, X. & Yang, H. 2014 Observation and analysis of whistler-mode wave and electrostatic solitary waves within density depletion near magnetic reconnection x-line. Sci. China Phys. Mech. 57 (4), 652658.CrossRefGoogle Scholar
Li, X., Wang, R. & Lu, Q. 2023 Division of magnetic flux rope via magnetic reconnection observed in the magnetotail. Geophys. Res. Lett. 50, e2022GL101084.CrossRefGoogle Scholar
Meier, J., Stegeman, G., Christodoulides, D., Silberberg, Y., Morandotti, R., Yang, H., Salamo, G., Sorel, M. & Aitchison, J. 2004 Experimental observation of discrete modulational instability. Phys. Rev. Lett. 92 (16), 163902–1163902–4.CrossRefGoogle ScholarPubMed
Nassiri, M. 2008 Whistler wave propagation in field-aligned density duct plasma. Europhys. Lett. 82, 35001.CrossRefGoogle Scholar
Shukla, P., Mond, M., Kourakis, I. & Eliasson, B. 2005 Nonlinearly coupled whistlers and dust-acoustic perturbations in dusty plasmas. Phys. Plasmas 12, 124502.CrossRefGoogle Scholar
Shukla, P. & Stenflo, L. 1995 Nonlinear alfvén waves. Phys. Scr. T60, 3235.CrossRefGoogle Scholar
Singh, N. 2013 Propagation and dispersion of whistler waves generated by fast reconnection onset. Phys. Plasmas 20, 022106.CrossRefGoogle Scholar
Stenzel, R. 1999 Whistler waves in space and laboratory plasmas. J. Geophys. Res. 104 (A7), 1437914395.CrossRefGoogle Scholar
Sutherland, O., Giles, M. & Boswell, R. 2005 Ion cyclotron production by a four-wave interaction with a helicon pump. Phys. Rev. Lett. 94, 205002.CrossRefGoogle ScholarPubMed
Tai, K., Hasegawa, A. & Tomita, A. 1986 Observation of modnlational instability in optical fibers. Phys. Rev. Lett. 56 (2), 135139.CrossRefGoogle ScholarPubMed
Tripathi, V. & Kumara, P. 2008 Parametric conversion of a lower hybrid wave into a whistler in a plasma. Phys. Plasmas 15, 052107.Google Scholar
Tskhakaya, D. 1981 On the ‘non-stationary’ ponderomotive force of a hf field in a plasma. J. Plasma Phys. 25, 233238.CrossRefGoogle Scholar
Zhu, M., Liu, Y., Wei, C., Ni, H. & Wei, Q. 2023 Ionization induced by the ponderomotive force in intense and high-frequency laser fields. J. Chem. Phys. 158, 164306.CrossRefGoogle ScholarPubMed