Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hl5gf Total loading time: 0.534 Render date: 2023-01-27T17:29:18.949Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Localized coherent nonlinear wave structures in dusty plasma with non-thermal ions

Published online by Cambridge University Press:  01 December 2007

TARSEM SINGH GILL
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India (nspst99@yahoo.com)
CHANCHAL BEDI
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India (nspst99@yahoo.com)
NARESHPAL SINGH SAINI
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar–143005, India (nspst99@yahoo.com)
HARVINDER KAUR
Affiliation:
Department of Physics, Khalsa College, Amritsar–143002, India

Abstract

In the present research paper, the characteristics of dust-acoustic solitary waves (DASWs) and double layers (DLs) are studied. Ions are treated as non-thermal and variable dust charge is considered. The Korteweg–de Vries equation is derived using a reductive perturbation method. It is noticed that compressive solitons are obtained up to a certain range of relative density δ (=ni0/ne0) beyond which rarefactive solitons are observed. The study is further extended to investigate the possibility of DLs. Only compressive DLs are permissible. Both DASWs and DLs are sensitive to variation of the non-thermal parameter.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
[2]Verheest, F. 2000 Waves in Dusty Space Plasma. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
[3]Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
[4]Shukla, P. K. 1992 Phys. Scripta 45, 504.CrossRefGoogle Scholar
[5]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
[6]Rao, N. N. 1999 Phys. Plasmas 6, 4414.CrossRefGoogle Scholar
[7]Melandso, F., Askalsen, F. T. and Havnes, O. 1993 Planet. Space Sci. 41, 312.CrossRefGoogle Scholar
[8]Varma, R. K., Shukla, P. K. and Krishan, V. 1993 Phys. Rev. E 47, 3612.Google Scholar
[9]Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Phys. Rev. E 58, 6517.CrossRefGoogle Scholar
[10]Gill, T. S. and Kaur, H. 2000 Pramana-J. Phys. 55, 855.CrossRefGoogle Scholar
[11]Roychoudhury, R. and Mukherjee, S. 1997 Phys. Plasmas 4, 2305.CrossRefGoogle Scholar
[12]Xie, B., He, K. and Huang, Z. 1999 Phys. Plasmas 6, 3808.CrossRefGoogle Scholar
[13]Nejoh, Y. N. 1997 Phys. Plasmas 4, 2813.CrossRefGoogle Scholar
[14]Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 2610.CrossRefGoogle Scholar
[15]Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.CrossRefGoogle Scholar
[16]Mamun, A. A. and Shukla, P. K. 2002 IEEE Trans. Plasma Sci. 30, 720.CrossRefGoogle Scholar
[17]Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 175.CrossRefGoogle Scholar
[18]Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1995 Phys. Scripta T13, 211.Google Scholar
[19]Mamun, A. A. 1997 Phy. Rev. E 55, 1852.Google Scholar
[20]Mamun, A. A. 1998 Phys. Plasmas 5, 322.CrossRefGoogle Scholar
[21]Mamun, A. A. 1998 J. Plasma Phys. 59, 575.CrossRefGoogle Scholar
[22]Mamun, A. A. 2000 Eur. Phys. J. D 11, 143.Google Scholar
[23]Gill, T. S., Kaur, H. and Saini, N. S. 2004 J. Plasma Phys. 70, 481.CrossRefGoogle Scholar
[24]Alfven, H. and Carlqvist, P. 1967 Sov. Phys. 220, 1.Google Scholar
[25]Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
[26]Borovsky, L. E. 1984 J. Geophys. Res. 89, 2251.CrossRefGoogle Scholar
[27]Carlqvist, P. 1986 IEEE Trans. Plasma Sci. 14, 794.CrossRefGoogle Scholar
[28]Mishra, M. K., Arora, A. K. and Chhabra, R. S. 2002 Phys. Rev. E 66, 46402.Google Scholar
[29]Goswami, K. S. and Bujarbarua, S. 1985 Phys. Lett. A 108, 149.CrossRefGoogle Scholar
[30]Bharuthram, R. and Shukla, P. K. 1986 Phys. Fluids 29, 3214.CrossRefGoogle Scholar
[31]Jain, S. L., Tiwari, R. S. and Sharma, S. R. 1990 Canad. J. Phys. 68, 474.CrossRefGoogle Scholar
[32]Yadav, L. L. and Sharma, S. R. 1991 Phys. Scripta 43, 106.CrossRefGoogle Scholar
[33]Shukla, P. K. and Mamun, A. A. 2001 IEEE Trans. Plasma. Sci. 29, 221.CrossRefGoogle Scholar
[34]Shukla, P. K. 2000 Phys. Plasmas 7, 1044.CrossRefGoogle Scholar
[35]El-Labany, S. K., El-Taibany, W. F., Mamun, A. A. and Moslem, W. M. 2004 Phys. Plasmas 11, 926.CrossRefGoogle Scholar
[36]El-Labany, S. K. and El-Taibany, W. F. 2003 Phys. Plasmas 10, 989.CrossRefGoogle Scholar
[37]Roychoudhury, R. and Chatterjee, P. 1999 Phys. Plasmas 6, 406.CrossRefGoogle Scholar
[38]Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 171.Google Scholar
[39]Shukla, P. K. 2003 Phys. Plasmas 10, 1619.CrossRefGoogle Scholar
[40]Cairns, R. A., Mamun, A. A., Bingham, R., Bostrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Rev. Lett. 22, 2709.CrossRefGoogle Scholar
[41]Cairns, R. A., Bingham, R., Dendy, R. O., Nairn, C. M. C., Shukla, P. K. and Mamun, A. A. 1995 J. Geophys. Res. 5, C643.Google Scholar
[42]Volosevich, A. V., Galperin, Yu. I. and Truhachev, F. M. 2002 Adv. Space Res. 30, 1677.CrossRefGoogle Scholar
[43]Lundin, R., Eliasson, L., Hultqvist, B. and Stasiewicz, K. 1987 Geophys. Res. Lett. 14, 443.CrossRefGoogle Scholar
[44]Hall, D. S., Chaloner, C. P., Bryant, D. A., Lepine, D. R. and Trikakis, , 1991 J. Geophys. Res. 96, 7869.CrossRefGoogle Scholar
[45]Sakanaka, P. H. and Shukla, P. K. 2000 Phys. Scripta T84, 181.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Localized coherent nonlinear wave structures in dusty plasma with non-thermal ions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Localized coherent nonlinear wave structures in dusty plasma with non-thermal ions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Localized coherent nonlinear wave structures in dusty plasma with non-thermal ions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *