Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pxp6n Total loading time: 0.182 Render date: 2021-06-19T23:00:47.960Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration

Published online by Cambridge University Press:  01 October 2009

AKITO SAGISAKA
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
HIDEO NAGATOMO
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita, Osaka 565-0871, Japan
HIROYUKI DAIDO
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
ALEXANDER S. PIROZHKOV
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp) Division of Optics, P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy prospekt, 119991 Moscow, Russia
KOICHI OGURA
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
SATOSHI ORIMO
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
MICHIAKI MORI
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
MAMIKO NISHIUCHI
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
AKIFUMI YOGO
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
MASATAKA KADO
Affiliation:
Advanced Photon Research Center and Photo-Medical Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa-city, Kyoto 619-0215, Japan (sagisaka.akito@jaea.go.jp)
Corresponding
E-mail address:

Abstract

We characterize the electron density distributions of preformed plasma for laser-accelerated proton generation. The preformed plasma of a titanium target 3 μm thick is generated by prepulse and amplified spontaneous emission (ASE) of a high-intensity Ti:sapphire laser and is measured with an interferometer using a second harmonic probe beam. High-energy protons are obtained by reducing the size of the preformed plasma by changing the ASE duration before main pulse at the front side (laser incidence side) of the target. Simulation results with two-dimensional radiation hydrodynamic code are close to the experimental results for low-density region ~4 × 1019 cm−3 at the front side. In the high-density region near to the target surface, the interferometry underestimates the density due to the substantial refraction. The characterization of hydrodynamic expansion with the interferometer and simulation is a useful tool for investigation of high-energy proton generation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Santala, M. I. K. et al. 2000 Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Phys. Rev. Lett. 84, 14591462.CrossRefGoogle ScholarPubMed
[2]Giulietti, D. et al. 2002 Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Phys. Plasmas 9, 36553658.CrossRefGoogle Scholar
[3]Borghesi, M., Fuchs, J., Bulanov, S. V., Mackinnon, A. J., Patel, P. K. and Roth, M. 2006 Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.CrossRefGoogle Scholar
[4]Nishiuchi, M. et al. 2008 Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Phys. Plasmas 15, 053104.CrossRefGoogle Scholar
[5]Bastiani, S., Rousse, A., Geindre, J. P., Audebert, P., Quoix, C., Hamoniaux, G., Antonetti, A. and Gauthier, J.-C. 1997 Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths. Phys. Rev. E 56, 71797185.Google Scholar
[6]Hamster, H., Sullivan, A., Gordon, S., White, W. and Falcone, R. W. 1993 Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.CrossRefGoogle ScholarPubMed
[7]Hamster, H., Sullivan, A., Gordon, S. and Falcone, R. W. 1994 Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671677.Google ScholarPubMed
[8]Tilborg, J. van et al. 2006 Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96, 014801.Google ScholarPubMed
[9]Sagisaka, A. et al. 2008 Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction. Appl. Phys. B 90, 373377.CrossRefGoogle Scholar
[10]Mackinnon, A. J. et al. 2001 Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86, 17691772.CrossRefGoogle ScholarPubMed
[11]Roth, M. et al. 2002 Energetic ions generated by laser pulses: a detailed study on target properties. Phys. Rev. ST Accel. Beams 5, 061301.CrossRefGoogle Scholar
[12]Matsukado, K. et al. 2003 Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 91, 215001.CrossRefGoogle ScholarPubMed
[13]Kaluza, M., Schreiber, J., Santala, M. I. K., Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. and Witte, K. J. 2004 Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
[14]Wang, X., Nemoto, K., Nayuki, T., Oishi, Y. and Eidmann, K. 2005 Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions. Phys. Plasmas 12, 113101.CrossRefGoogle Scholar
[15]Lindau, F., Lundh, O., Persson, A., McKenna, P., Osvay, K., Batani, D. and Wahlström, C.-G. 2005 Laser-accelerated protons with energy-dependent beam direction. Phys. Rev. Lett. 95, 175002.CrossRefGoogle ScholarPubMed
[16]Yogo, A. et al. 2008 Laser ion acceleration via control of the near-critical density target. Phys. Rev. E 77, 016401.Google ScholarPubMed
[17]Gizzi, L. A. et al. 1994 Characterization of laser plasmas for interaction studies. Phys. Rev. E 49, 56285643.Google ScholarPubMed
[18]Borghesi, M., Giulietti, A., Giulietti, D., Gizzi, L. A., Macchi, A. and Willi, O. 1996 Characterization of laser plasmas for interaction studies: progress in time-resolved density mapping. Phys. Rev. E 54, 67696773.Google ScholarPubMed
[19]Tommasini, R., Eidmann, K., Kawachi, T. and Fill, E. E. 2004 Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-like x-ray lasers. Phys. Rev. E 69, 066404.Google Scholar
[20]Rus, B. et al. 1997 Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers. Phys. Rev. A 56, 42294241.CrossRefGoogle Scholar
[21]Sagisaka, A. et al. 2004 Characterization of preformed plasmas with an interferometer for ultra-short high-intensity laser-plasma interactions. Appl. Phys. B 78, 919922.CrossRefGoogle Scholar
[22]Sagisaka, A. et al. 2006 Development of a two-color interferometer for observing wide range electron density profiles with a femtosecond time resolution. Appl. Phys. B 84, 415419.CrossRefGoogle Scholar
[23]Mori, M. et al. 2006 Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-exrefd ion accelerator research. Laser Phys. 16, 10921096.CrossRefGoogle Scholar
[24]Fukumi, A. et al. 2005 Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse. Phys. Plasmas 12, 100701.CrossRefGoogle Scholar
[25]Nakamura, S. et al. 2006 Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement. Jpn. J. Appl. Phys. 45, L913L916.CrossRefGoogle Scholar
[26]Yogo, A. et al. 2007 Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Phys. Plasmas 14, 043104.CrossRefGoogle Scholar
[27]Ragozin, E. N. et al. 2006 Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments. Rev. Sci. Instrum. 77, 123302.CrossRefGoogle Scholar
[28]Nagatomo, H., Johzaki, T., Nakamura, T., Sakagami, H., Sunahara, A. and Mima, K. 2007 Simulation and design study of cryogenic cone shell target for fast ignition realization experiment project. Phys. Plasmas 14, 056303.CrossRefGoogle Scholar
[29]Yabe, T., Xiao, F. and Utsumi, T. 2001 The constrained interpolation profile method for multiphase analysis. J. Comp. Phys. 169, 556593.CrossRefGoogle Scholar
[30]More, R. M., Warren, K. H., Young, D. A. and Zimmerman, G. B. 1988 A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.CrossRefGoogle Scholar
[31]Takami, K. and Takabe, H., 1990 Simple fitting formulas of equation of state for laser produced plasmas. Tech. Rep of Osaka Univ. 40, Vol. 2005, 159–173, Osaka Univ.Google Scholar
[32]Nishiuchi, M. et al. 2006 The laser proton acceleration in the strong charge separation régime. Phys. Lett. A 357, 339344.CrossRefGoogle Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *