Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-2z7pd Total loading time: 0.223 Render date: 2021-05-08T17:37:08.594Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force

Published online by Cambridge University Press:  11 February 2019

Sayak Bose
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York City, NY 10027, USA
M. Kaur
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA
P. K. Chattopadhyay
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
J. Ghosh
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
Edward Thomas Jr
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849, USA
Y. C. Saxena
Affiliation:
Institute for Plasma Research, HBNI, Bhat, Gandhinangar - 382428, India
Corresponding
E-mail address:

Abstract

Dust vortices with a void at the centre are reported in this paper. The role of the spatial variation of the plasma potential in the rotation of dust particles is studied in a parallel plate glow discharge plasma. Probe measurements reveal the existence of a local potential minimum in the region of formation of the dust vortex. The minimum in the potential well attracts positively charged ions, while it repels the negatively charged dust particles. Dust rotation is caused by the interplay of the two oppositely directed ion drag and Coulomb forces. The balance between these two forces is found to play a major role in the radial confinement of the dust particles above the cathode surface. Evolution of the dust vortex is studied by increasing the discharge current from 15 to 20 mA. The local minimum of the potential profile is found to coincide with the location of the dust vortex for both values of discharge currents. Additionally, it is found that the size of the dust vortex as well as the void at the centre increases with the discharge current.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adhikary, N. C., Bailung, H., Pal, A. R., Chutia, J. & Nakamura, Y. 2007 Observation of sheath modification in laboratory dusty plasma. Phys. Plasmas 14 (10), 103705.CrossRefGoogle Scholar
Akdim, M. R. & Goedheer, W. J. 2003 Modeling of self-exrefd dust vortices in complex plasmas under microgravity. Phys. Rev. E 67 (5), 056405.Google ScholarPubMed
Barkan, A., Merlino, R. L. & D’angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.CrossRefGoogle Scholar
Bose, S., Kaur, M., Chattopadhyay, P. K., Ghosh, J., Saxena, Y. C. & Pal, R. 2017 Langmuir probe in collisionless and collisional plasma including dusty plasma. J. Plasma Phys. 83 (2), 615830201.CrossRefGoogle Scholar
Chai, K.-B. & Bellan, P. M. 2016 Vortex motion of dust particles due to non-conservative ion drag force in a plasma. Phys. Plasmas 23 (2), 023701.CrossRefGoogle Scholar
Chu, J. H. & Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72 (25), 4009.CrossRefGoogle ScholarPubMed
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710.CrossRefGoogle Scholar
Fortov, V. E. & Morfill, G. E. 2010 Complex and Dusty Plasmas: From Laboratory to Space. CRC Press.Google Scholar
Frost, L. S. 1957 Effect of variable ionic mobility on ambipolar diffusion. Phys. Rev. 105, 354356.CrossRefGoogle Scholar
Ivlev, A. V., Khrapak, S. A., Zhdanov, S. K., Morfill, G. E. & Joyce, G. 2004 Force on a charged test particle in a collisional flowing plasma. Phys. Rev. Lett. 92, 205007.CrossRefGoogle Scholar
Ivlev, A. V., Zhdanov, S. K., Khrapak, S. A. & Morfill, G. E. 2005 Kinetic approach for the ion drag force in a collisional plasma. Phys. Rev. E 71, 016405.Google Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2016 Complex plasma experimental device – a test bed for studying dust vortices and other collective phenomena. Pramana 87 (6), 89.CrossRefGoogle Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J. & Saxena, Y. C. 2015a Observation of dust torus with poloidal rotation in direct current glow discharge plasma. Phys. Plasmas 22 (3), 033703.CrossRefGoogle Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Sharma, D., Ghosh, J., Saxena, Y. C. & Thomas, E. Jr. 2015b Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma. Phys. Plasmas 22 (9), 093702.CrossRefGoogle Scholar
Kaur, M., Bose, S., Chattopadhyay, P. K., Ghosh, J. & Saxena, Y. C. 2015c Resolving issues associated with Langmuir probe measurements in high pressure complex (dusty) plasmas. In Proceedings of the Tenth Asia Plasma and Fusion Association Conference, p. 168.Google Scholar
Khrapak, S. A. & Morfill, G. E. 2008 An interpolation formula for the ion flux to a small particle in collisional plasmas. Phys. Plasmas 15 (11), 114503.CrossRefGoogle Scholar
Laframboise, J. G.1966 Theory of spherical and cylindrical Langmuir probes in a collisionless, maxwellian plasma at rest. Tech. Rep. DTIC Document.Google Scholar
Laishram, M., Sharma, D. & Kaw, P. K. 2014 Dynamics of a confined dusty fluid in a sheared ion flow. Phys. Plasmas 21 (7), 073703.CrossRefGoogle Scholar
Law, D. A., Steel, W. H., Annaratone, B. M. & Allen, J. E. 1998 Probe-induced particle circulation in a plasma crystal. Phys. Rev. Lett. 80, 41894192.CrossRefGoogle Scholar
Liu, B., Goree, J., Nosenko, V. & Boufendi, L. 2003 Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma. Phys. Plasmas 10 (1), 920.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. & D’angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5 (5), 16071614.CrossRefGoogle Scholar
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80 (6), 773786.CrossRefGoogle Scholar
Praburam, G. & Goree, J. 1996 Experimental observation of very low-frequency macroscopic modes in a dusty plasma. Phys. Plasmas 3 (4), 12121219.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38 (4), 543546.CrossRefGoogle Scholar
Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 4958.CrossRefGoogle Scholar
Samarian, A., Vaulina, O., Tsang, W. & James, B. W. 2002 Formation of vertical and horizontal dust vortexes in an RF-discharge plasma. Phys. Scr. 2002 (T98), 123.Google Scholar
Samsonov, D. & Goree, J. 1999 Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59 (1), 1047.Google Scholar
Schulz, G. J. & Brown, S. C. 1955 Microwave study of positive ion collection by probes. Phys. Rev. 98, 16421649.CrossRefGoogle Scholar
Talbot, L. & Chou, Y. S. 1969 Langmuir probe response in the transition regime. In Rarefied Gas Dynamics, vol. II, pp. 17231737. Academic.Google Scholar
Taylor, Z. J., Gurka, R., Kopp, G. A. & Liberzon, A. 2010 Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans. Instrument. Meas. 59 (12), 32623269.CrossRefGoogle Scholar
Thomas, E. Jr. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6 (7), 26722675.CrossRefGoogle Scholar
Thomas, E. Jr., Avinash, K. & Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11 (5), 17701774.CrossRefGoogle Scholar
Tichý, M., S̃ícha, M., David, P. & David, T. 1994 A collisional model of the positive ion collection by a cylindrical Langmuir probe. Contrib. Plasma Phys. 34 (1), 5968.CrossRefGoogle Scholar
Tsytovich, V. N., Vladimirov, S. V., Morfill, G. E. & Goree, J. 2001 Theory of collision-dominated dust voids in plasmas. Phys. Rev. E 63, 056609.Google ScholarPubMed
Vaulina, O. S., Petrov, O. F., Fortov, V. E., Morfill, G. E., Thomas, H. M., Semenov, Y. P., Ivanov, A. I., Krikalev, S. K. & Gidzenko, Y. P. 2004 Analysis of dust vortex dynamics in gas discharge plasma. Phys. Scr. 2004 (T107), 224.CrossRefGoogle Scholar
Vaulina, O. S., Samarian, A. A., Nefedov, A. P. & Fortov, V. E. 2001 Self-exrefd motion of dust particles in a inhomogeneous plasma. Phys. Lett. A 289 (4), 240244.CrossRefGoogle Scholar
Williams, J. D. 2016 Application of particle image velocimetry to dusty plasma systems. J. Plasma Phys. 82 (3), 615820302.CrossRefGoogle Scholar
Zakrzewski, Z. & Kopiczynski, T. 1974 Effect of collisions on positive ion collection by a cylindrical Langmuir probe. Plasma Physics 16 (12), 1195.CrossRefGoogle Scholar
Supplementary material: File

Bose et al. supplementary material

Bose et al. supplementary material 1

Download Bose et al. supplementary material(File)
File 29 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dust vortices in a direct current glow discharge plasma: a delicate balance between ion drag and Coulomb force
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *