Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-2rqk5 Total loading time: 0.194 Render date: 2021-06-25T07:32:13.534Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Dependence of fishbone cycle on energetic particle intensity in EAST low-magnetic-shear plasmas

Published online by Cambridge University Press:  10 December 2020

Xiang Zhu
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
Long Zeng
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Zhiyong Qiu
Affiliation:
Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027, PR China
Baolong Hao
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
Wei Shen
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Xiang Gu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
Muquan Wu
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
Tian Tang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
Jinping Qian
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Haiqing Liu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Di Jiang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
Liqing Xu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Jizong Zhang
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Yong Liu
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Qing Zang
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Yinxian Jie
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Xiang Gao
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, PR China
Xiaodong Lin
Affiliation:
Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, PR China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
Corresponding

Abstract

The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Budny, R. V., Bell, M. G., Janos, A. C., Jassby, D. L., Johnson, L. C., Mansfield, D. K., Mccune, D. C., Redi, M. H., Schivell, J. F., Taylor, G., et al. 1995 Simulations of alpha parameters in a TFTR DT supershot with high fusion power. Nucl. Fusion 35 (12), 14971508.Google Scholar
Chen, L. 1994 Theory of magnetohydrodynamic instabilities exrefd by energetic particles in tokamaks. Phys. Plasmas 1 (5), 15191522.Google Scholar
Chen, W., Ding, X. T., Liu, Y., Yang, Q. W., Ji, X. Q., Isobe, M., Yuan, G. L., Zhang, Y. P., Zhou, Y., Song, X. Y., et al. 2010 Features of ion and electron fishbone instabilities on HL-2A. Nucl. Fusion 50 (8), 084008.Google Scholar
Chen, L., White, R. B. & Rosenbluth, M. N. 1984 Excitation of internal kink modes by trapped energetic beam ions. Phys. Rev. Lett. 52 (13), 11221125.Google Scholar
Chen, L. & Zonca, F. 2016 Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88 (1), 015008.Google Scholar
Coppi, B. 1994 Astrophysical and laboratory experiments and theories on high energy plasmas. Plasma Phys. Control. Fusion 36 (12B), B107B121.Google Scholar
Coppi, B. & Porcelli, F. 1986 Theoretical model of fishbone oscillations in magnetically confined plasmas. Phys. Rev. Lett. 57 (18), 22722275.Google ScholarPubMed
Duong, H. H., Heidbrink, W. W., Strait, E. J., Petrie, T. W., Lee, R., Moyer, R. A. & Watkins, J. G. 1993 Loss of energetic beam ions during TAE instabilities. Nucl. Fusion 33 (5), 749765.Google Scholar
Fasoli, A., Gormenzano, C., Berk, H. L., Breizman, B., Briguglio, S., Darrow, D. S., Gorelenkov, N., Heidbrink, W. W., Jaun, A., Konovalov, S. V., et al. 2007 Physics of energetic ions. Nucl. Fusion 47 (6), S264S284.CrossRefGoogle Scholar
Fu, G. Y., Park, W., Strauss, H. R., Breslau, J., Chen, J., Jardin, S. & Sugiyama, L. E. 2006 Global hybrid simulations of energetic particle effects on the n = 1 mode in tokamaks: internal kink and fishbone instability. Phys. Plasmas 13 (5), 052517.CrossRefGoogle Scholar
Gao, X. & The East Team 2018 Sustained high βN plasmas on EAST tokamak. Phys. Lett. A 382 (18), 12421246.Google Scholar
Gao, X., Yang, Y., Zhang, T., Liu, H. Q., Li, G. Q., Ming, T. F., Liu, Z. X., Wang, Y. M., Zeng, L., Han, X., et al. 2017 Key issues for long-pulse high-βN operation with the experimental advanced superconducting tokamak (EAST). Nucl. Fusion 57 (5), 056021.Google Scholar
Gao, X., Zeng, L., Wu, M. Q., Zhang, T., Yang, Y., Ming, T. F., Zhu, X., Wang, Y. M., Liu, H. Q., Zang, Q., et al. 2020 Experimental progress of hybrid operational scenario on EAST tokamak. Nucl. Fusion 60 (10), 102001.CrossRefGoogle Scholar
Gu, X., Shen, B., Qian, J. P., Ding, S. Y., Du, H. F., Sun, Y. W., Xiao, B. J., Wu, B., Wang, J. F., Huang, J., et al. 2019 Evaluation of NBI absorption and fast ion stored energy to improve thermal energy confinement time calculation in EAST. Plasma Sci. Technol. 22 (2), 025103.Google Scholar
Han, X., Liu, X., Liu, Y., Domier, C. W., Luhmann, N. C., Li, E. Z., Hu, L. Q. & Gao, X. 2014 Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak. Rev. Sci. Instrum. 85 (7), 073506.CrossRefGoogle ScholarPubMed
Heidbrink, W. W., Duong, H. H., Manson, J., Wilfrid, E., Oberman, C. & Strait, E. J. 1993 The nonlinear saturation of beam-driven instabilities: theory and experiment. Phys. Fluids B: Plasma Phys. 5 (7), 21762186.CrossRefGoogle Scholar
Heidbrink, W. W. & Sadler, G. J. 1994 The behaviour of fast ions in tokamak experiments. Nucl. Fusion 34 (4), 535615.CrossRefGoogle Scholar
Heidbrink, W. W. & Sager, G. 1990 The fishbone instability in the DIII-D tokamak. Nucl. Fusion 30 (6), 10151025.CrossRefGoogle Scholar
Hu, C. D., Xie, Y. H., Xie, Y. L., Liu, S., Xu, Y. J., Liang, L. Z., Jiang, C. C., Sheng, P., Gu, Y. M., Li, J., et al. 2015 Overview of development status for EAST-NBI system. Plasma Sci. Technol. 17 (10), 817825.CrossRefGoogle Scholar
Kass, T., Bosch, H. S., Hoenen, F., Lackner, F., Maraschek, M., Zohm, H. & Asdex Upgrade Team 1998 The fishbone instability in ASDEX upgrade. Nucl. Fusion 38 (6), 807819.Google Scholar
Lao, L. L., St. John, H., Stambaugh, R. D., Kellman, A. G. & Pfeiffer, W. 1985 Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25 (11), 16111622.CrossRefGoogle Scholar
Li, Y. Y., Fu, J., Lyu, B., Du, X. W., Li, C. Y., Zhang, Y., Yin, X. H., Yu, Y., Wang, Q. P., Hellermann, M., et al. 2014 Development of the charge exchange recombination spectroscopy and the beam emission spectroscopy on the EAST tokamak. Rev. Sci. Instrum. 85 (11), 11E428.CrossRefGoogle ScholarPubMed
Li, G. Q., Ren, Q. L., Qian, J. P., Lao, L. L., Ding, S. Y., Chen, Y. J., Liu, Z. X., Lu, B. & Zang, Q. 2013 Kinetic equilibrium reconstruction on EAST tokamak. Plasma Phys. Control. Fusion 55 (12), 125008.CrossRefGoogle Scholar
Li, Y. L., Xu, G. S., Tritz, K., Zhu, Y. B., Wan, B. N., Lan, H., Liu, Y. L., Wei, J., Zhang, W., Hu, G. H., et al. 2015 Edge multi-energy soft x-ray diagnostic in experimental advanced superconducting tokamak. Rev. Sci. Instrum. 86 (12), 123512.CrossRefGoogle ScholarPubMed
Liu, H. Q., Qian, J. P., Jie, Y. X., Ding, W. X., Brower, D. L., Zou, Z. Y., Li, W. M., Lian, H., Wang, S. X., Yang, Y., et al. 2016 Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST. Rev. Sci. Instrum. 87 (11), 11D903.Google ScholarPubMed
Mcguire, K., Goldston, R., Bell, M., Bitter, M., Bol, K., Brau, K., Buchenauer, D., Crowley, T., Davis, S., Dylla, F., et al. 1983 Study of high-beta magnetohydrodynamic modes and fast-ion losses in PDX. Phys. Rev. Lett. 50 (12), 891895.Google Scholar
Mukhovatov, V., Shimada, M., Lackner, K., Campbell, D. J., Uckan, N. A., Wesley, J. C., Hender, T. C., Lipschultz, B., Loarte, A., Stambaugh, R. D., et al. 2007 ITER contributions for demo plasma development. Nucl. Fusion 47 (6), S404S413.CrossRefGoogle Scholar
Nave, M. F. F., Campbell, D. J., Joffrin, E., Marcus, F. B., Sadler, G., Smeulders, P. & Thomsen, K. 1991 Fishbone activity in JET. Nucl. Fusion 31 (4), 697710.Google Scholar
Pankin, A., Mccune, D., Andre, R., Bateman, G. & Kritz, A. 2004 The tokamak Monte Carlo fast ion module NUBEAM in the national transport code collaboration library. Comput. Phys. Commun. 159 (3), 157184.CrossRefGoogle Scholar
Park, W., Belova, E. V., Fu, G. Y. & Tang, X. Z. 1999 Plasma simulation studies using multilevel physics models. Phys. Plasmas 6 (5), 17961803.Google Scholar
Porcelli, F., Stankiewicz, R., Kerner, W. & Berk, H. L. 1994 Solution of the drift-kinetic equation for global plasma modes and finite particle orbit widths. Phys. Plasmas 1 (3), 470480.Google Scholar
Qian, J. P., Lao, L. L., Liu, H. Q., Ding, W. X., Zeng, L., Luo, Z. P., Ren, Q. L., Huang, Y., Huang, J., Brower, D. L., et al. 2017 EAST equilibrium current profile reconstruction using polarimeter-interferometer internal measurement constraints. Nucl. Fusion 57 (3), 036008.Google Scholar
Sharapov, S. E., Alper, B., Berk, H. L., Borba, D. N., Breizman, B. N., Challis, C. D., Classen, I. G. J., Edlund, E. M., Eriksson, J., Fasoli, A., et al. 2013 Energetic particle instabilities in fusion plasmas. Nucl. Fusion 53 (10), 104022.CrossRefGoogle Scholar
Shen, W., Wang, F., Fu, G. Y., Xu, L. Q., Li, G. Q. & Liu, C. Y. 2017 Hybrid simulation of fishbone instabilities in the EAST tokamak. Nucl. Fusion 57 (11), 116035.Google Scholar
Tomabechi, K., Gilleland, J. R., Sokolov, Y. A., Toschi, R. & The ITER Team 1991 ITER conceptual design. Nucl. Fusion 31 (6), 11351224.CrossRefGoogle Scholar
Wan, B. N., Liang, Y. F., Gong, X. Z., Li, J. G., Xiang, N., Xu, G. S., Sun, Y. W., Wang, L., Qian, J. P., Liu, H. Q., et al. 2017 Overview of EAST experiments on the development of high-performance steady-state scenario. Nucl. Fusion 57 (10), 102019.Google Scholar
White, R. B. 2014 The Theory of Toroidally Confined Plasmas, 3rd edn, chap. 9. Imperial College Press.Google Scholar
White, R. B., Goldston, R. J., Mcguire, K., Boozer, A. H., Monticello, D. A. & Park, W. 1983 Theory of mode-induced beam particle loss in tokamaks. Phys. Fluids 26 (10), 29582965.Google Scholar
Xu, L. Q., Zhang, J. Z., Chen, K. Y., Hu, L. Q., Li, E. Z., Lin, S. Y., Shi, T. H., Duan, Y. M. & Zhu, Y. B. 2015 Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma. Phys. Plasmas 22 (12), 122510.Google Scholar
Zang, Q., Zhao, J. Y., Yang, L., Hu, Q. S., Xi, X. Q., Dai, X. X., Yang, J. H., Han, X. F., Li, M. T. & Hsieh, C. L. 2011 Upgraded multipulse laser and multipoint Thomson scattering diagnostics on EAST. Rev. Sci. Instrum. 82 (6), 063502.CrossRefGoogle ScholarPubMed
Zhuang, G., Li, G. Q., Li, J., Wan, Y. X., Liu, Y., Wang, X. L., Song, Y. T., Chan, V., Yang, Q. W., Wan, B. N., et al. 2019 Progress of the CFETR design. Nucl. Fusion 59 (11), 112010.CrossRefGoogle Scholar
Zonca, F., Buratti, P., Cardinali, A., Chen, L., Dong, J. Q., Long, Y. X., Milovanov, A. V., Romanelli, F., Smeulders, P., Wang, L., et al. 2007 Electron fishbones: theory and experimental evidence. Nucl. Fusion 47 (11), 15881597.Google Scholar
Zonca, F., Chen, L., Botrugno, A., Buratti, P., Cardinali, A., Cesario, R., Ridolfini, V. P. & JET-EFDA Contributors 2009 High-frequency fishbones at JET: theoretical interpretation of experimental observations. Nucl. Fusion 49 (8), 085009.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dependence of fishbone cycle on energetic particle intensity in EAST low-magnetic-shear plasmas
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dependence of fishbone cycle on energetic particle intensity in EAST low-magnetic-shear plasmas
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dependence of fishbone cycle on energetic particle intensity in EAST low-magnetic-shear plasmas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *