Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T23:41:27.210Z Has data issue: false hasContentIssue false

New middle Eocene whales from the Pisco Basin of Peru

Published online by Cambridge University Press:  14 July 2015

Mark D. Uhen
Affiliation:
1Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA,
Nicholas D. Pyenson
Affiliation:
2Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA, 3Department of Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA
Thomas J. Devries
Affiliation:
3Department of Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA
Mario Urbina
Affiliation:
4Departamento de Paleontología de Vertebrados, Museo de Historia Natural de San Marcos, Avenida Arenales 1256, Lima 14, Peru
Paul R. Renne
Affiliation:
5Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720-4767, USA 6Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA

Abstract

Three new specimens of middle Eocene cetaceans are reported from the Pisco Basin of southern Peru. All three specimens originate from the Paracas Formation and their minimum age is constrained to about 37 Ma using 40Ar/39Ar dating of ash collected ~100 m up section from the source localities. Two new genera of archaeocete cetaceans are described along with additional material of another distinctive protocetid, which is not named pending the discovery of more complete material. Phylogenetic analysis resolves the two new genera within Basilosauridae, while the unnamed protocetid is closely related to Eocetus. The discovery of crownward protocetids in South America demonstrates that early cetaceans may have dispersed into both hemispheres prior to evolving a fully aquatic lifestyle. Geochronologic constraints on the age of new Peruvian archaeocetes establish them as the oldest whales from South America and among the oldest known from the Southern Hemisphere, which highlights the need for better sampling of marginal marine rocks from this part of the world.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, I. and May-Collado, L. 2008. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution, 48: 964985.Google Scholar
Andrews, C. W. 1920. A description of new species of zeuglodont and of leathery turtle from the Eocene of southern Nigeria. Proceedings of the Zoological Society of London, 1919: 309319.Google Scholar
Árnason, U., Gullberg, A., Gretarsdottir, S., Ursino, B., and Janke, A. 2000. The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. Journal of Molecular Evolution, 50: 569578.Google Scholar
Asher, R. J., and Helgen, K. M. 2010. Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology, 10: 19.Google Scholar
Bajpai, S. and Thewissen, J. G. M. 1998. Middle Eocene cetaceans from the Harudi and Subathu Formations of India, p. 213234. In Thewissen, J. G. M. (ed.), The Emergence of Whales. Plenum Press, New York.Google Scholar
Beatty, B. L. and Geisler, J. H. 2010. A stratigraphically precise record of Protosiren (Protosirenidae, Sirenia) from North America. Neues Jahrbuch für Geologie und Palaeontologie. Abhandlungen, 258: 185194.Google Scholar
Bianucci, G., Nocchi, C., Sorbini, C., and Landini, W. 2003. L'Archeoceto Nella Roccia Alle Origini dei Cetacei. Museo di Storia Naturale e del Territorio, Pisa, p. 117.Google Scholar
Borsuk-Bialynicka, M. 1988. New remains of Archaeoceti from the Paleogene of Antarctica. Polish Polar Research, 9: 437445.Google Scholar
Brisson, A. D. 1762. Regnum Animale in Classes IX distributum sive synopsis methodica. Edito altero auctior. Theodorum Haak, Leiden, 294 p.Google Scholar
Burgess, C. E., Pearson, P. N., Lear, C. H., Morgans, H. E. G., Handley, L., Pancost, R. D., and Schouten, S. 2008. Middle Eocene climate cyclicity in the southern Pacific: Implications for global ice volume. Geology, 36: 651654.CrossRefGoogle Scholar
Clarke, J. A., Ksepka, D. T., Stucchi, M., Urbina, M., Giannini, N., Sertelli, S., Narváez, Y., and Boyd, C. A. 2007. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences, 104: 1154511550.CrossRefGoogle ScholarPubMed
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin, 104: 814828.Google Scholar
Cope, E. D. 1868. Second contribution to the history of the Vertebrata of the Miocene period of the United States. Proceedings of the Academy of Natural Sciences of Philadelphia, 20: 184194.Google Scholar
Dávila, M. F. U. 1993. Geologia de los Cuadrangulos de Pisco, Guadalupe, Punta grande, Ica y Cordova. Republica del Peru Sector Energia Y Minas Institutto Geologico Minero Y Metalurgico, 47: 162.Google Scholar
Devries, T. J. 1998. Oligocene deposition and Cenozoic sequence boundaries in the Pisco Basin (Peru). Journal of South American Earth Sciences, 11: 217231.Google Scholar
Devries, T. J. 2007. Cenozoic Turritellidae (Gastropoda) from southern Peru. Journal of Paleontology, 81: 331351.Google Scholar
Devries, T. J., Navarez, Y., Sanfilippo, A., Malumian, N., and Tapia, P. 2006. New microfossil evidence for a late Eocene age of the Otuma Formation (Southern Peru), XIII Congreso Peruano de Geología, Lima, Peru.Google Scholar
Devries, T. J. and Pearcy, W. G. 1982. Fish debris in sediments of the upwelling zone off central Peru: a late Quaternary record. Deep-Sea Research, 28: 87109.CrossRefGoogle Scholar
Dunbar, R. B., Marty, R. C., and Baker, P. A. 1990. Cenozoic marine sedimentation in the Sechura and Pisco basins, Peru. Palaeogeography, Palaeoclimatology, Palaeoecology, 77: 235261.CrossRefGoogle Scholar
Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process, p. 133171. In Grande, L. and Rieppel, O. (eds.), Interpreting the Hierarchy of Nature. Academic Press, San Diego.Google Scholar
Fitzgerald, E. M. G. 2004. A review of the Tertiary fossil Cetacea (Mammalia) localities in Australia. Memoirs of Museum Victoria, 61: 183208.Google Scholar
Fordyce, R. E. 1989. Origins and evolution of Antarctic marine mammals, p. 269281. In Crame, J. A. (ed.), Origins and Evolution of the Antarctic Biota. Geological Society Special Publication 47.Google Scholar
Fordyce, R. E. 2002. Oligocene archaeocetes and toothed mysticetes: Cetacea from times of transition. Geological Society of New Zealand Miscellaneous Publication, 114A: 1617.Google Scholar
Fordyce, R. E. and de muizon, C. 2001. Evolutionary history of cetaceans: a review, p. 169223. In Mazin, J.-M. and Buffrénil, V. (eds.), Secondary Adaptation of Tetrapods to Life in Water. Verlag Dr. Friedrich Pfeil, München, Germany.Google Scholar
Fostowicz-Frelik, L. 2003. An enigmatic whale tooth from the Upper Eocene of Seymour Island, Antarctica. Polish Polar Research, 24: 1328.Google Scholar
Geisler, J. H., Sanders, A. E., and Luo, Z.-X. 2005. A new protocetid whale (Cetacea: Archaeoceti) from the late middle Eocene of South Carolina. American Museum Novitates, 3480: 165.Google Scholar
Geisler, J. H. and Theodor, J. M. 2009. Hippopotamus and whale phylogeny. Nature, 458: E1E4.CrossRefGoogle ScholarPubMed
Geisler, J. H. and Uhen, M. D. 2003. Morphological support for a close relationship between hippos and whales. Journal of Vertebrate Paleontology, 23: 991996.Google Scholar
Geisler, J. H. and Uhen, M. D. 2005. Phylogenetic relationships of extinct Cetartiodactyls: Results of simultaneous analyses of molecular, morphological, and stratigraphic data. Journal of Mammalian Evolution, 12: 145160.Google Scholar
Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: stratigraphy, age and paleoenvironments. The University of Michigan Museum of Paleontology Papers on Paleontology, 30: 184.Google Scholar
Gingerich, P. D. 2010. Cetacea, p. 873899. In Werdelin, L. and Sanders, W. J. (eds.), Cenozoic Mammals of Africa. University of California Press, Berkeley.Google Scholar
Gingerich, P. D., Arif, M., Bhatti, M. A., Anwar, M., and Sanders, W. J. 1997. Basilosaurus drazindai and Basiloterus hussaini, new Archaeoceti (Mammalia, Cetacea) from the middle Eocene Drazinda Formation, with a revised interpretation of ages of whale-bearing strata in the Kirthar Group of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, The University of Michigan, 30: 5581.Google Scholar
Gingerich, P. D., Arif, M., and Clyde, W. C. 1995. New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda Formation of the Sulaiman Range, Punjab (Pakistan). Contributions from the Museum of Paleontology, The University of Michigan, 29: 291330.Google Scholar
Gingerich, P. D., Haq, M. U., Zalmout, I. S., Khan, I. H., and Malakani, M. S. 2001. Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science, 293: 22392242.CrossRefGoogle ScholarPubMed
Gingerich, P. D., Raza, S. M., Arif, M., Anwar, M., and Zhou, X. 1994. New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature, 368: 844847.CrossRefGoogle Scholar
Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science, 249: 154157.Google Scholar
Gingerich, P. D., Ul-Haq, M., von Koenigswald, W., Sanders, W. J., Smith, B. H., and Zalmout, I. S. 2009. New protocetid whale from the middle Eocene of Pakistan: Birth on land, precocial development, and sexual dimorphism. PLoS One, 4: 120.Google Scholar
Gingerich, P. D., Zalmout, I. S., Ul-Haq, M., and Bhatti, M. A. 2005. Makaracetus bidens, a new protocetid archaeocete (Mammalia, Cetacea) from the early middle Eocene of Balochistan (Pakistan). Contributions from the Museum of Paleontology, The University of Michigan, 31: 197210.Google Scholar
Göhlich, U. B. 2007. The oldest fossil record of the extant penguin genus Spheniscus—a new species from the Miocene of Peru. Acta Palaeontologica Polonica, 52: 285298.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589 p.Google Scholar
Hulbert, R. C. Jr. 1998. Postcranial osteology of the North American middle Eocene protocetid Georgiacetus, p. 235268. In Thewissen, J. G. M. (ed.), The Emergence of Whales. Plenum Press, New York.Google Scholar
Hulbert, R. C. Jr., Petkewich, R. M., Bishop, G. A., Bukry, D., and Aleshire, D. P. 1998. A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia. Journal of Paleontology, 72: 907927.Google Scholar
Iturralde-Vinenet, M. A. and MacPhee, R. D. E. 1999. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238: 195.Google Scholar
Kellogg, R. 1936. A Review of the Archaeoceti. Carnegie Institution of Washington Special Publication, 482: 1366.Google Scholar
Köhler, R. and Fordyce, R. E. 1997. An archaeocete whale (Cetacea: Archaeoceti) from the Eocene Waihao Greensand, New Zealand. Journal of Vertebrate Paleontology, 17: 574583.CrossRefGoogle Scholar
Ksepka, D. T. and Clarke, J. A. 2010. The basal penguin (Aves: Sphenisciformes) Perudyptes devriesi and a phylogenetic evaluation of the penguin fossil record. Bulletin of the American Museum of Natural History, 337: 177.Google Scholar
Linnaeus, K. 1758. Systema Naturae. Volume Tomus I. Laurentii Salvi, Stockholm.Google Scholar
Luterbacher, H. P., Ali, J. R., Brinkhuis, H., Gradstein, F. M., Hooker, J. J., Monechi, S., Ogg, J. G., Röhl, U., Sanfilippo, A., and Schmitz, B. 2004. The Paleogene Period, p. 384408. In Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.), A Geologic Time Scale 2004. Cambridge University Press, Cambridge.Google Scholar
Maddison, W. P. and Maddison, D. R. 2000. MacClade: Analysis of Phylogeny and Character Evolution Version 4.0. Sinauer Associates, Inc., Sunderland, Massachusetts, 398 p.Google Scholar
Manger, P. R. 2006. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biological Reviews, 81: 293338.Google Scholar
Marino, L., Butti, C., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., Lusseau, D., Mccowan, B., Nimchinsky, E. A., Pack, A. A., Reidenberg, J. S., Reiss, D., Rendell, L., Uhen, M. D., van der gucht, E., and Whitehead, H. 2008. A claim in search of evidence: reply to Manger's thermogenesis hypothesis of cetacean brain structure. Biological Reviews, 83: 417440.CrossRefGoogle Scholar
Marino, L., Mcshea, D. W., and Uhen, M. D. 2004. Origin and evolution of large brains in toothed whales. The Anatomical Record, 281A: 12471255.Google Scholar
Marocco, R. and de muizon, C. 1988. Los vertebrados del Neogeno de La Costa Sur del Perú: Ambient sedimatario y condiciones de fosilización. Bulletin de l'Institut Francais d'Etudes Andines, 17: 105117.Google Scholar
Martínez-Cáceres, M. and de Muizon, C. 2008. In press. A new basilosaurid (Cetacea, Pelagiceti) from the late Eocene to early Oligocene Otuma Formation of Peru. Comptes Rendus Palevol.Google Scholar
Mcleod, S. A. and Barnes, L. G. 2008. A new genus and species of Eocene protocetid archaeocete whale (Mammalia, Cetacea) from the Atlantic Coastal Plain. Natural History Museum of Los Angeles County Contributions in Science, 41: 7398.Google Scholar
Miller, G. S. Jr. 1923. The telescoping of the cetacean skull. Smithsonian Miscellaneous Collections, 76: 171.Google Scholar
Montoya, M., Garcia, W., and Caldas, J. 1994. Geologia de los Cuadrangulos de Lomitas, Palpa, Nasxa Y Puquio. Republica del Peru Sector Energia Y Minas Instituto Geologico Minero Y Metalurgico, 53: 1100.Google Scholar
Morgans, H. E. G., Beu, A. G., Cooper, R. A., Crouch, E. M., Hollis, C. J., Jones, C. M., Raine, J. I., Strong, C. P., Wilson, G. J., and Wilson, G. S. 2004. The New Zealand Geological Timescale: Paleogene (Dannevirke, Arnold and Landon Series). Institute of Geological and Nuclear Sciences Monograph, 22: 124163.Google Scholar
de muizon, C. 1981. Deux nouveaux Monachinae (Phocidae, Mammalia) du Pliocène de Sud-Sacaco. Éditions Recherche sur les Civilisations, Mémoire, 6: 1150.Google Scholar
de muizon, C. 1984. Les Vertébrés Fossiles de la Formation Pisco (Pérou) Second Part: Les Odontocetes (Cetacea, Mammalia du Pliocene inferieur de Sus-Sacaco. Institut Francais d'Études Andines, 50: 9175.Google Scholar
de muizon, C. 2009. L'origine et l'histoire évolutive de Cétacés. Comptes Rendus Palevol, 8: 295309.Google Scholar
de muizon, C. and McDonald, H. G. 1995. An aquatic sloth from the Pliocene of Peru. Nature, 375: 224227.Google Scholar
Owen, R. 1848. Description of teeth and portions of jaws of two extinct Anthracotherioid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the NW coast of the Isle of Wight: with an attempt to develope Cuvier's idea of the Classification of Pachyderms by the number of their toes. Quarterly Journal of the Geological Society of London, 4: 103141.Google Scholar
Renne, P. R., Knight, K. B., Nomade, S., Leung, K.-N., and Lou, T.-P. 2005. Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology. Applied Radiation and Isotopes, 62: 2532.Google Scholar
Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R. 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74: 53495367.CrossRefGoogle Scholar
Renne, P. R., Sharp, Z. D., and Heizler, M. T. 2008. Cl-derived argon isotop production in the CLICIT facility of OSTR reactor and the effects of the Cl-correction in 40Ar/39Ar geochonology. Chemical Geology, 255: 463466.Google Scholar
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., and Depaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145: 117152.Google Scholar
Spaulding, M., O'Leary, M. A., and Gatesy, J. 2009. Relationships of Cetacea (Artiodactyla) among mammals: Increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One, 4: e7062.Google Scholar
Steiger, R. H. and Jäger, E. 1977. Subcommission on geochonology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36: 359362.Google Scholar
Stromer, E. 1908. Die Archaeoceti des Ägyptischen Eozäns. Beiträge zur Paläontolgie und Geologie Östrerreich-Ungarns und des Orients, 21: 170.Google Scholar
Swofford, D. L. 2002. PAUP* Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Tambussi, C. P., Acosta Hospitaleche, C. I., Reguero, M. A., and Marenssi, S. A. 2006. Late Eocene penguins from West Antarctica: systematics and biostratigraphy. In Francis, J. E., Pirrie, D., and Crame, J. A. (eds.), Geological Society Special Publications, 145161.Google Scholar
Thewissen, J. G. M. and Bajpai, S. 2001. Dental morphology of Remingtonocetidae (Cetacea, Mammalia). Journal of Paleontology, 75: 463465.2.0.CO;2>CrossRefGoogle Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. 2001. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413: 277281.Google Scholar
Tripati, A. and Zachos, J. 2002. Late Eocene tropical sea surface temperatures: A perspective from Panama. Paleoceanography, 17: 10321045.CrossRefGoogle Scholar
Uhen, M. D. 1999. New species of protocetid archaeocete whale, Eocetus wardii (Mammalia, Cetacea), from the middle Eocene of North Carolina. Journal of Paleontology, 73: 512528.CrossRefGoogle Scholar
Uhen, M. D. 2001. New material of Eocetus wardii (Mammalia, Cetacea), from the middle Eocene of North Carolina. Southeastern Geology, 40: 135148.Google Scholar
Uhen, M. D. 2004. Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): An archaeocete from the middle to late Eocene of Egypt. The University of Michigan Museum of Paleontology Papers on Paleontology, 34: 1222.Google Scholar
Uhen, M. D. 2005a. Cetacea: Online Systematics Archive 9. The Paleobiology Database. Accessed September 2010.Google Scholar
Uhen, M. D. 2005b. A new genus and species of archaeocete whale from Mississippi. Southeastern Geology, 43: 157172.Google Scholar
Uhen, M. D. 2008a. Basilosaurids, p. 9194. In Thewissen, J. G. M., Perrin, W. F., and Würsig, B. (eds.), Encyclopedia of Marine Mammals, Second Edition. Elsevier, Burlington, Massachussetts.Google Scholar
Uhen, M. D. 2008b. New protocetid whales from Alabama and Mississippi, and a new cetacean clade, Pelagiceti. Journal of Vertebrate Paleontology, 28: 589593.Google Scholar
Uhen, M. D. 2008c. A new Xenorophus-like odontocete cetacean from the Oligocene of North Carolina and a discussion of the basal odontocete radiation. Journal of Systematic Palaeontology, 6: 433452.Google Scholar
Uhen, M. D. and Berndt, H.-J. 2008. First record of the archaeocete whale Family Protocetidae from Europe. The Fossil Record, 11: 5760.Google Scholar
Uhen, M. D. and Gingerich, P. D. 2001. New genus of dorudontine archaeocete (Cetacea) from the middle-to-late Eocene of South Carolina. Marine Mammal Science, 17: 134.Google Scholar
Uhen, M. D., Pyenson, N., Devries, T. J., and Urbina Schmitt, M. 2008. The oldest cetaceans from the southern hemisphere: New archaeocetes from the Pisco Basin of southern Peru. Journal of Vertebrate Paleontology, 28: 154A155A.Google Scholar
Uhen, M. D. and Pyenson, N. D. 2007. Diversity estimates, biases, and historiographic effects: resolving cetacean diversity in the Tertiary. Palaeontologia Electronica, 10: 122.Google Scholar
Waddell, P. J., Okada, N., and Hasegawa, M. 1999. Towards resolving the interordinal relationships of placental mammals. Systematic Biology, 48: 15.Google Scholar
Wiman, C. 1905. Über die Alttertiären vertebraten der Seymourinsel. Wissenschaftliche Ergebnisse der Schwedischen südpolar-expedition 1901-1903, 3: 135.Google Scholar
Supplementary material: File

Uhen et al. supplementary material

Supplemental Table 1

Download Uhen et al. supplementary material(File)
File 314.9 KB