Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T19:22:42.308Z Has data issue: false hasContentIssue false

The mandible of the primitive tetrapod Greererpeton, and the early evolution of the tetrapod lower jaw

Published online by Cambridge University Press:  20 May 2016

John R. Bolt
Affiliation:
Department of Geology, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, Illinois, 60605,
R. Eric Lombard
Affiliation:
Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Chicago, Illinois 60637,

Abstract

Exceptionally well-preserved Late Mississippian colosteid amphibian specimens occur in southern Illinois; the mandible is described here. Unexpectedly primitive features include toothed adsymphysial and intercoronoid fossa with fenestrate floor. The large adsymphysial bears teeth, forms 50 percent of the symphysis, and meets its antimere in a very coarsely rugose suture. These and other characters are shown to occur also in Greererpeton burkemorani, to which we refer the Illinois specimens. Colosteid mandibles from a Late Mississippian locality in southern Iowa resemble G. burkemorani closely, although they are not conspecific. Our findings are summarized in a PRESERVE-format data table containing 226 characters. G. burkemorani's adsymphysial suture morphology is shared with the baphetid Megalocephalus pachycephalus. However, the relationship of colosteids to other Paleozoic amphibian groups remains unclear, beyond their position as stem tetrapods. The single elongate Meckelian fenestra of colosteids is likely primitive for tetrapods. A three-stage model is proposed for the evolution of Meckelian fenestrae in tetrapods. Based on sutural morphology, G. burkemorani is considered to have a kinetic joint between skull table and cheek. A functional hypothesis is outlined in which movements at this joint are accommodated at the symphysis. A phylogenetically based test of this hypothesis is proposed.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. E. 1991. Tetrapod or near-tetrapod fossils from the Upper Devonian of Scotland. Nature, 354:298301.CrossRefGoogle Scholar
Ahlberg, P. E. 1992. A new holoptychiid porolepiform fish from the Upper Frasnian of Elgin, Scotland. Palaeontology, 35(4):813828Google Scholar
Ahlberg, P. E. 1995. Elginerpeton pancheni and the earliest tetrapod clade. Nature, 373:420425.CrossRefGoogle Scholar
Ahlberg, P. E., and Clack, J. A. 1998. Lower jaws, lower tetrapods—a review based on the Devonian genus Acanthostega . Transactions of the Royal Society of Edinburgh: Earth Sciences, 89:1146.CrossRefGoogle Scholar
Ahlberg, P. E., Luksevics, E., and Lebedev, O. 1994. The first tetrapod finds from the Devonian (Upper Famennian) of Latvia. Philosophical Transactions of the Royal Society of London (B), 343:303328.CrossRefGoogle Scholar
Blum, S. D., Maisey, J. G., and Rutzky, I. S. 1989. A method for chemical reduction and removal of ferric iron applied to vertebrate fossils. Journal of Vertebrate Paleontology, 9:119121.CrossRefGoogle Scholar
Bolt, J. R. 1990. Mississippian vertebrates from Iowa. National Geographic Research, 6:339354.Google Scholar
Bolt, J. R., and Lombard, R. E. 1994. Primitive colosteid amphibian specimens from a Mississippian sinkhole in SE Iowa. Journal of Vertebrate Paleontology, 14(3, Supplement):18A.Google Scholar
Bolt, J. R., and Lombard, R. E. 1996. Cranial kinesis in Mississippian colosteid amphibians. Journal of Vertebrate Paleontology, 16(3, Supplement):23A.Google Scholar
Bolt, J. R., McKay, R. M., Witzke, B. J., and McAdams, M. P. 1988. A new Lower Carboniferous tetrapod locality in Iowa. Nature, 333:768770.CrossRefGoogle Scholar
Clack, J. A. 1988. New material of the early tetrapod Acanthostega from the Upper Devonian of East Greenland. Palaeontology, 31:699724.Google Scholar
Cloutier, R., and Ahlberg, P. E. 1996. Morphology, characters, and the interrelationships of basal sarcopterygians, p. 445479. In Stiassny, M. L. J., Parenti, L. R., and Johnson, G. D. (eds.), Interrelationships of Fishes. Academic Press, London, 496 p.CrossRefGoogle Scholar
Godfrey, S. J. 1989. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton burkemorani Romer, 1969. Philosophical Transactions of the Royal Society of London B, 323:75133.Google Scholar
Godfrey, S. J. 1989. Ontogenetic changes in the skull of the Carboniferous tetrapod Greererpeton burkemorani Romer, 1969. Philosophical Transactions of the Royal Society of London B, 323:135153.Google Scholar
Gross, W. 1941. Über den Unterkiefer einiger devonischer Crossopterygier. Abhandlungen der Preußischen Akademie der Wissenschaften Jahrgang 1941. Mathematisch-Naturwissenschaftliche Klasse, No. 7:151.Google Scholar
Heaton, M. J. 1980. The Cotylosauria: a reconsideration of a group of archaic tetrapods, p. 487551. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, London, 633 p.Google Scholar
Hook, R. W. 1983. Colosteus scutellatus (Newberry), a primitive temnospondyl amphibian from the Middle Pennsylvanian of Linton, Ohio. American Museum Novitates, 2770:141.Google Scholar
Hook, R. W., and Baird, D. 1993. A new fish and tetrapod assemblage from the Allegheny Group (Late Westphalian, Upper Carboniferous) of eastern Ohio, U. S. A., p. 143154. In Heidtke (Compiler), U., New Research on Permo-Carboniferous Faunas. POLLICHIA-Buch 29. Pfalzmuseum für Naturkunde, Bad Dürkheim.Google Scholar
Jarvik, E. 1996. The Devonian tetrapod Ichthyostega. Fossils and Strata, No. 40:1213.Google Scholar
Lauder, G. V. 1995. On the inference of function from structure, p. 118. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge.Google Scholar
Lebedev, O. A. 1995. Morphology of a new osteolepidid fish from Russia. Bulletin du Musëum National d'Histoire naturelle, 4e ser., 17:287341.Google Scholar
Lombard, R. E., and Bolt, J. R. 1995a. A new primitive tetrapod, Whatcheeria deltae, from the Lower Carboniferous of Iowa. Palaeontology, 38:471494.Google Scholar
Lombard, R. E., and Bolt, J. R. 1995b. Characters primitive for tetrapods: can we trust the colosteids? Journal of Vertebrate Paleontology, 15(3, Supplement):41A.Google Scholar
Lombard, R. E., and Bolt, J. R. 1999. A microsaur from the Mississippian of Illinois and a format for morphological characters. Journal of Paleontology, 73:908923.CrossRefGoogle Scholar
Milner, A. R. 1990. The radiations of temnospondyl amphibians. Systematics Association Special Volume, 42:321349.Google Scholar
Panchen, A. L. 1975. A new genus and species of anthracosaur amphibian from the Lower Carboniferous of Scotland and the status of Pholidogaster pisciformis Huxley. Philosophical Transactions of the Royal Society of London, B 269:581640.Google Scholar
Panchen, A. L., and Smithson, T. R. 1988. The relationships of the earliest tetrapods, p. 132. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods, Volume 1, Amphibians, Reptiles, Birds. Systematics Association Special Volume, 35A, 377 p.Google Scholar
Romer, A. S. 1969. A temnospondylous labyrinthodont from the Lower Carboniferous. Kirtlandia, 6:120.Google Scholar
Scapino, R. P. 1965. The third joint of the canine jaw. Journal of Morphology, 116:2350.CrossRefGoogle ScholarPubMed
Schultze, H.-P., and Bolt, J. R. 1996. The lungfish Tranodis and the tetrapod fauna from the Upper Mississippian of North America. Special Papers in Palaeontology no. 52:3154.Google Scholar
Smithson, T. R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). Zoological Journal of the Linnean Society, 76:2990.CrossRefGoogle Scholar
Swann, D. H. 1963. Classification of Genevievian and Chesterian (Late Mississippian) Rocks of Illinois. Illinois State Geological Survey Report of Investigations, 21, 91 p.Google Scholar
Thomson, K. S. 1967. Mechanisms of intracranial kinetics in fossil rhipidistian fishes (Crossopterygii) and their relatives. Journal of the Linnean Society (Zoology), 178:223253.Google Scholar
Vorobyeva, E. I. 1977. Morphology and nature of evolution of crossopterygian fishes. Trudi, Paleontological Institute, Academy of Sciences of the USSR, 163:1240.Google Scholar
Witzke, B. J., McKay, R. M., Bunker, B. J., and Woodson, F. J. 1990. Stratigraphy and Paleoenvironments of Mississippian Strata in Keokuk and Washington Counties, Southeast Iowa. Iowa Department of Natural Resources, Guidebook Series No. 10, 105 p.Google Scholar