Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T18:27:06.642Z Has data issue: false hasContentIssue false

Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China

Published online by Cambridge University Press:  04 December 2017

Shixue Hu
Affiliation:
Chengdu Center, China Geological Survey, Chengdu, 610081, P.R. China 〈hushixue@126.com〉
Bernd-D. Erdtmann
Affiliation:
Institut für Angewandte Geowissenschaften, Technische Universität Berlin, D-13355 Berlin, Germany 〈berni1739@gmail.com〉
Michael Steiner
Affiliation:
Institut für Geowissenschaften, Freie Universität Berlin, D 12249, Berlin, Germany 〈michael.steiner@FU-Berlin.de〉
Yuandong Zhang
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China 〈ydzhang@nigpas.ac.cn〉, 〈fczhao@nigpas.ac.cn〉
Fangchen Zhao
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing 210008, China 〈ydzhang@nigpas.ac.cn〉, 〈fczhao@nigpas.ac.cn〉
Zhiliang Zhang
Affiliation:
Early Life Institute, State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China, 〈zhangtensor@hotmail.com〉, 〈elihanj@nwu.edu.cn〉
Jian Han
Affiliation:
Early Life Institute, State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China, 〈zhangtensor@hotmail.com〉, 〈elihanj@nwu.edu.cn〉

Abstract

Malongitubus kuangshanensis Hu, 2005 from the early Cambrian Chengjiang Lagerstätte of China is redescribed as a pterobranch and provides the best evidence to demonstrate that hemichordates were present as early as Cambrian Stage 3. Interpretation of this taxon as a hemichordate is based on the morphology of the branched colony and the presence of resistant inner threads consistent with the remains of an internal stolon system. The presence of fusellar rings in the colonial tubes cannot be unambiguously proven for Malongitubus, probably due to early decay and later diagenetic replacement of the thin organic material of the tubarium, although weak annulations are still discernible in parts of the tubes. The description of M. kuangshanensis is revised according to new observations of previously reported specimens and recently collected additional new material. Malongitubus appears similar in most features to Dalyia racemata Walcott, 1919 from the Cambrian Stage 5 Burgess Shale, but can be distinguished by the existence of disc-like thickenings at the bases of tubarium branching points in the latter species. Both species occur in rare mass-occurrence layers with preserved fragmentary individuals of different decay stages, with stolon remains preserved as the most durable structures. Benthic pterobranchs may have occurred in some early Cambrian shallow marine communities in dense accumulations and provided firm substrates and shelter for other benthic metazoans as secondary tierers.

Type
Articles
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateson, W., 1885, The later stages in the development of Balanoglossus kowalevskii, with a suggestion as to the affinities of the Enteropneusta: Quarterly Journal of Microscopical Science, v. 25, p. 81122.Google Scholar
Beli, E., Piraino, S., and Cameron, C.B., 2017, Fossilization processes of graptolites: Insights from the experimental decay of Rhabdopleura sp. (Pterobranchia): Palaeontology, v. 60, p. 389400.Google Scholar
Briggs, D.E.G., Kear, A.J., Baas, M., de Leeuw, J.W., and Rigby, S., 1995, Decay and composition of the hemichordate Rhabdopleura: Implications for taphonomy of graptolites: Lethaia, v. 28, p. 1523.Google Scholar
Bronn, H.G., 1849, Index Palaeontologicus oder Übersicht der bis jetzt bekannten fossilen Organismen, Prof. H. R. Göppert und Herm. V. Meyer, in Bronn H.G. ed., Zweite Abtheilung. B. Enumerator palaeontologicus: Systematische Zusammenstellung und geologische Entwicklungs-Gesetze der organischen Reiche: Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung, 976 p.Google Scholar
Brusca, R.C., and Brusca, G.J., 2003, Invertebrates: Paris, Sinauer Associates, 922 p.Google Scholar
Caron, J.B., Conway Morris, S., and Cameron, C.B., 2013, Tubicolous enteropneusts from the Cambrian period: Nature, v. 495, p. 503506.Google Scholar
Durman, P.N., and Sennikov, N.V., 1993, A new Rhabdopleurid hemichordate from the middle Cambrian of Siberia: Palaeontology, v. 36, p. 283296.Google Scholar
Harvey, T.H.P., Ortega-Hernández, J., Lin, J.-P., Zhao, Y.-L., and Butterfield, N.J., 2012, Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China: Acta Palaeontologica Polonica, v. 57, p. 423436.Google Scholar
Hou, X.-G., Aldridge, R.J., Siveter, D.J., Derek, J., Williams, M., Zalasiewicz, J., and Ma, X.-Y., 2011, An early Cambrian hemichordate zooid: Current Biology, v. 21, p. 612616.CrossRefGoogle ScholarPubMed
Hu, S.-X., 2005, Taphonomy and palaeoecology of the early Cambrian Chengjiang Biota from Eastern Yunnan, China: Berliner Paläeobiologische Abhandlungen, v. 7, p. 185187.Google Scholar
Johnston, K.J., Johnston, P.A., and Powell, W.G., 2009, A new, middle Cambrian, Burgess Shale-type biota, Bolaspidella Zone, Chancellor Basin, southeastern British Columbia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 106126.Google Scholar
Kirjanov, V.V., 1968, Paleontology and stratigraphy of the Baltic deposits in the Volhyn-Podolia, in Paleontology and Stratigraphy of the Lower Paleozoic of Volhyn-Podolia: Kiev, Naukova Dumka, p. 527 [in Russian].Google Scholar
Lankester, E.R., 1877, Notes on the embryology and classification of the animal kingdom: Comprising a revision of speculations relative to the origin and significance of the germ-layers: Quarterly Journal of Microscopical Science, N. S., v. 17, p. 399454.Google Scholar
LoDuca, S.T., and Kramer, A., 2014, Graptolites from the Wheeler and Marjum Formations (Cambrian, Series 3) of Utah: Journal of Paleontology, v. 88, p. 403410.Google Scholar
LoDuca, S.T., Caron, J.B., Schiffbauer, J.D., Xiao, S.-H., and Kramer, A., 2015a, A reexamination of Yuknessia from the Cambrian of British Columbia and Utah: Journal of Paleontology, v. 89, p. 8295.Google Scholar
LoDuca, S.T., Wu, M.Y., Zhao, Y.L., Xiao, S.-H., Schiffbauer, J.D., Caron, J.B., and Babcock, L.E., 2015b, Reexamination of Yuknessia from the Cambrian of China and first report of Fuxianospira from North America: Journal of Paleontology, v. 89, p. 899911.Google Scholar
Luo, H.L., Jiang, Z.W., and Tang, L.D., 1994, Stratotype section for lower Cambrian Stages in China: Kunming, Yunnan Science and Technology Press, 183 p. [in Chinese with English summary].Google Scholar
Maletz, J., 2014, Fossil Hemichordata (Pterobranchia, Enteropneusta): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 398, p. 1627.Google Scholar
Maletz, J., and Steiner, M., 2015, Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3: Palaeontology, v. 58, p. 10731107.Google Scholar
Maletz, J., Steiner, M., and Fatka, O., 2005, Middle Cambrian pterobranchs and the Question: What is a graptolite?: Lethaia, v. 38, p. 7385.Google Scholar
Mierzejewski, P., and Kulicki, C., 2003, Cortical fibrils and secondary deposits in periderm of the hemichordate Rhabdopleura (Graptolithoidea): Acta Palaeontologica Polonica, v. 48, p. 99111.Google Scholar
Mitchell, C.E., Melchin, M.J., Cameron, C.B., and Maletz, J., 2013, Phylogenetic analysis reveals that Rhabdopleura is an extant graptolite: Lethaia, v. 46, p. 3456.Google Scholar
Nanglu, K., Caron, J.-B., Conway Morris, S., and Cameron, C.B., 2016, Cambrian suspension-feeding tubicolous hemichordates: BMC Biology, v. 14, p. 56, doi: 10.1186/s12915-016-0271-4.Google Scholar
Ou, Q., Han, J., Zhang, Z.F., Shu, D.G., Sun, G., and Mayer, G., 2017, Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity: Proceedings of the National Academy of Sciences, v. 114, p. 88358840.Google Scholar
Rickards, R.B., Baillie, P.W., and Jago, J.B., 1990, An upper Cambrian (Idamean) dendroid assemblage from near Smithton, northwestern Tasmania: Alcheringa, v. 14, p. 207232.Google Scholar
Ruppert, E.E., Fox, R.S., and Barnes, R.D., 2004, Invertebrate Zoology: A Functional Evolutionary Approach: Belmont, CA, Cole Publishing, 963 p.Google Scholar
Sennikov, N.V., 2016, Morphology of the exoskeleton and soft tissues of Cambrian rhabdopleurids: Paleontological Journal, v. 50, p. 16261636.Google Scholar
Sokolov, B.S., 1997, Essays on the advent of the Vendian System: Moscow, KMK Scientific Press Ltd., 156 p.Google Scholar
Urbanek, A., 1986, The enigma of graptolite ancestry: Lesson from a phylogenetic debate, in Hoffman, A., and Nitecki, M.H., eds., Problematic Fossil Taxa: New York, Oxford University Press, p. 184225.Google Scholar
Urbanek, A., 1994, Living non-graptolite: Lethaia, v. 27, p. 18.Google Scholar
Urbanek, A., and Dilly, P.N., 2000, The stolon system in Rhabdopleura compacta (Hemichordata) and its phylogenetic implications: Acta Palaeontologica Polonica, v. 45, p. 201226.Google Scholar
Walcott, C.D., 1911, Cambrian geology and palaeontology. Middle Cambrian annelids. Smithsonian Miscellaneous: Collections, v. 57, p. 107144.Google Scholar
Walcott, C.D., 1919, Cambrian geology and palaeontology IV. Middle Cambrian algae: Smithsonian Miscellaneous Collections, v. 67, p. 217260.Google Scholar
Wang, H.Z., Zhang, Z.F., Holmer, L.E., Hu, S.X., Wang, X.R., and Li, G.X., 2012, Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: Implications for the ecological expansion of brachiopods during the Cambrian explosion: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 323–325, p. 6067.Google Scholar
Zhang, W.T., Babcock, L.E., Xiang, L.W., Sun, W.G., Luo, H.L., and Jiang, Z.W., 2001, Lower Cambrian stratigraphy of Chengjiang, eastern Yunnan, China with special notes on the Chinese Parabadiella, Moroccan Abadiella and Australian Abadiella huoi : Acta Palaeontologica Sinica, v. 40, p. 294309 [in Chinese with English summary].Google Scholar
Zhang, Z.F., Han, J., Wang, Y., Emig, C.C., and Shu, D.G., 2010, Epibionts on the lingulate brachiopod Diandongia from the early Cambrian Chengjiang Lagerstätte, South China: Proceedings of Royal Society of London B: Biological Science, v. 277, p. 175181.Google Scholar
Zhao, F.C., Hu, S.X., Caron, J.B., Zhu, M.Y., Yin, Z.J., and Lu, M., 2012, Spatial variation in the diversity and composition of the lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 346–347, p. 5465.Google Scholar
Zhao, Y.L., Steiner, M., Yang, R.D., Erdtmann, B.-D., Guo, Q.J., Zhou, Z., and Wallis, E., 1999, Discovery and significance of the early metazoan biotas from the lower Cambrian Niutitang Formation, Zunyi, Guizhou, China: Acta Palaeontologica Sinica, v. 38 (Suppl.), p. 132144 [in Chinese with English summary].Google Scholar