Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T16:43:44.525Z Has data issue: false hasContentIssue false

Complex noncalcified macroalgae from the Silurian of Cornwallis Island, Arctic Canada

Published online by Cambridge University Press:  14 July 2015

Steven T. Loduca
Affiliation:
1Department of Geography and Geology, Eastern Michigan University, Ypsilanti, 48197, USA,
Michael J. Melchin
Affiliation:
2Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada,
Heroen Verbruggen
Affiliation:
3Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium,

Abstract

Thin beds of silty limestone within a Ludlovian (Ludfordian) section of the Cape Phillips Formation on Cornwallis Island, Arctic Canada, contain numerous specimens of noncalcified macroalgae in association with dendroid and graptoloid graptolites, brachiopods, and trilobites. The algal material, preserved as carbonaceous compressions, represents three new taxa, each characterized by a central axis surrounded by laterals. Laterals of Eocladus xiaoi n. gen. n. sp. are thin and branch to the fifth order whereas those of Chaetocladus captitatus n. sp. are undivided and form a distinctive capitulum. Thalli of Palaeocymopolia nunavutensis n. gen. n. sp. have a branched, serial-segmented form and a corticated structure. On the basis of thallus architecture, all three taxa are assigned to the extant green algal order Dasycladales. Parallels exist between this macroalgal assemblage and a modern macroalgal association in Florida Bay.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassoullet, J. P., Bernier, P., Deloffre, R., Genot, P., Jaffrezo, M., Poignant, A. F., and Segnozac, G. 1977. Classification criteria of fossil Dasycladales, p. 154166. In Flügel, E. (ed.), Fossil Algae. Springer, Berlin.Google Scholar
Beadle, S. C. 1988. Dasyclads, cyclocrinitids, and receptaculitids: comparative morphology and paleoecology. Lethaia, 21:112.CrossRefGoogle Scholar
Berchenko, O. I. 2000. New representatives of fossil algae (Chlorophyta) from the Paleozoic of Ukraine. International Journal on Algae, 2:97102.Google Scholar
Berger, S. and Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Georg Thieme, Stuttgart, 247 p.Google Scholar
Bitter, P. H. von, Purnell, M. A., Tetreault, D. K., and Stott, C. A. 2007. Eramosa Lagerstätte—Exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 35:879882.CrossRefGoogle Scholar
Bouček, B. 1941. Ueber neue Algenreste aus dem böhmischen Silur. Vestník Kralovske Ceské Spolecnosti Nauk, p. 15.Google Scholar
Brett, C. E., Allison, P. A., Desantis, M. K., Liddell, W. D., and Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:933.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Chuvashov, B. and Riding, R. 1984. Principal floras of Palaeozoic marine calcareous algae. Palaeontology, 27:487500.Google Scholar
Conway Morris, S. and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, Paper 122:148.Google Scholar
de Freitas, T. A., Trettin, H. P., Dixon, O. A., and Mallamo, M. 1999. Silurian System of the Canadian Arctic Archipelago. Bulletin of Canadian Petroleum Geology, 47:136193.Google Scholar
Elliott, G. 1955. Fossil calcareous algae from the Middle East. Micropaleontology, 1:125131.Google Scholar
Elliott, G. 1971. A new fossil alga from the English Silurian. Palaeontology, 14:637641.Google Scholar
Elliott, G. 1982. A possible non-calcified dasycladalean alga from the Carboniferous of England. Bulletin of the British Museum of Natural History (Geology), 36:105107.Google Scholar
Fry, W. L. 1983. An algal flora from the Upper Ordovician of the Lake Winnipeg region, Manitoba, Canada. Review of Palaeobotany and Palynology, 39:313341.Google Scholar
Grazhdankin, D. V., Nagovitsin, K. E., and Maslov, A. V. 2007. Late Vendian Miaohe-type ecological assemblage of the East European Platform. Doklady Earth Sciences, 417:11831187.Google Scholar
Graham, L. E. and Wilcox, L. W. 2000. Algae. Prentice Hall, Upper Saddle River, New Jersey, 700 p.Google Scholar
Gümbel, C. W. 1873. Ueber Conodictyum bursiforme Etallon, eine Foraminifere aus der Gruppe der Dactyloporideen. Sitzungsberichte der Königlich-Bayerischen Akademie der Wissenschaften München, Mathematisch-Physikalische Classe, 3:282294.Google Scholar
Høeg, O. A. 1927. Dimorphosiphon rectangulare. Preliminary note on a new Codiacea from the Ordovician of Norway. Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo, Matematisk Naturvitenskapelig Klasse, 4:115.Google Scholar
Høeg, O. A. 1937. Callisphenus gracilis, n. gen. n. sp., a fossil alga from the Wenlock of the Oslo region. Norsk Geologisk Tidsskrift, 17:4346.Google Scholar
Hubmann, B., Verderbe, L., and Messner, F. 2008. Devonian calcareous green algal flora of the Rannach Nappe (Graz Palaeozoic, Austria). Geologia Croatica, 61:113122.Google Scholar
Ishchenko, A. A. 1985. Siluriiskie vodorosli Podolii. Naukova Dumka, Kyiv, 116 p.Google Scholar
Johnson, J. H. 1961. Review of Ordovician algae, p. 1102. In Johnson, J. H. and Høeg, O. A. (eds.), Studies of Ordovician Algae. Colorado School of Mines Quarterly, 56 p.Google Scholar
Kenrick, P. and Li, C.-S. 1998. An early, non-calcified dasycladalean alga from the Lower Devonian of Yunnan Province, China. Review of Palaeobotany and Palynology, 100:7388.CrossRefGoogle Scholar
Kenrick, P. and Vinther, J. 2006. Chaetocladus gracilis n. sp., a non-calcified Dasycladales from the Upper Silurian of Skåne, Sweden. Review of Palaeobotany and Palynology, 142:153160.Google Scholar
Kluessendorf, J. 1994. Predictability of Silurian Fossil-Konservat-Lagerstätten in North America. Lethaia, 27:337344.CrossRefGoogle Scholar
Kräusel, R. and Weyland, H. 1962. Algen und Psilophyten aus dem Unterdevon von Alken an der Mosel. Senckenbergiana Lethaea, 43:249282.Google Scholar
Leliaert, F., Millar, A. J. K., Vlaeminck, C., and Coppejans, E. 2007. Systematics of the green macroalgal genus Chamaedoris Montagne (Siphonocladales), with an emended description of the genus Struvea Sonder. Phycologia, 46:709725.Google Scholar
Lenz, A. C. 1990. Ludlow and Pridoli (Upper Silurian) graptolite biostratigraphy of the central Arctic Islands: A preliminary report. Canadian Journal of Earth Sciences, 27:10741083.Google Scholar
Li, X.-X. and Cai, C.-Y. 1978. A type-section of Lower Devonian strata in southwest China with brief notes on the succession and correlation of its plant assemblages. Acta Geologica Sinica, 52:112.Google Scholar
Littler, M. M., Littler, D. S., and Taylor, P. R. 1983. Evolutionary strategies in a tropical barrier reef system: Functional-form groups of marine macroalgae. Journal of Phycology, 19:229237.Google Scholar
LoDuca, S. T. 1990. Medusaegraptus mirabilis as a noncalcified dasyclad alga. Journal of Paleontology, 64:469474.Google Scholar
LoDuca, S. T. 1995. Thallophytic-alga-dominated biotas from the Silurian Lockport Group of New York and Ontario. Northeastern Geology and Environmental Sciences, 17:371383.Google Scholar
LoDuca, S. T. 1997. The green alga Chaetocladus (Dasycladales). Journal of Paleontology, 71:940949.Google Scholar
LoDuca, S. T. and Behringer, E. R. 2009. Functional morphology and evolution of early Paleozoic dasycladalean algae. Paleobiology, 35:6376.CrossRefGoogle Scholar
LoDuca, S. T. and Brett, C. E. 1997. The Medusaegraptus epibole and Ludlovian Konservat-Lagerstätten of eastern North America, p. 369405. In Brett, C. E. and Baird, G., (eds.), Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. Columbia University Press, New York, 604 p.Google Scholar
LoDuca, S. T., Kluessendorf, J., and Mikulic, D. G. 2003. A new noncalcified dasycladalean alga from the Silurian of Wisconsin. Journal of Paleontology, 77:956962.Google Scholar
LoDuca, S. T. and Pratt, L. 2002. Stable carbon-isotope compositions of compression fossils from Paleozoic Konservat-Lagerstätten. Palaios, 17:287291.Google Scholar
Maslov, B. P. 1956. Fossil calcareous algae of the USSR. Trudy Instituta geologicheskih nauk, Akademii Nauk SSSR, 160:1301. (In Russian).Google Scholar
Melchin, M. J. 1989. Llandovery graptolite biostratigraphy and paleobiogeography, Cape Phillips Formation, Canadian Arctic Islands. Canadian Journal of Earth Sciences, 26:17261746.Google Scholar
Melchin, M. J. and Holmden, C. 2006. Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 234:186200.Google Scholar
Mu, X. 1991. Fossil Udoteaceae and Gymnocodiaceae, p. 146166. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer, Berlin, 571 p.Google Scholar
Nitecki, M. H. 1976. Ordovician Batophoreae (Dasycladales) from Michigan. Fieldiana (Geology), 35:2940.Google Scholar
Nitecki, M. H. and Spjeldnaes, N. 1993. Silurian noncalcareous algae from Gotland, p. 345351. In Barattolo, F., DeCastro, P., and Parente, M. (eds.), Studies on Fossil Benthic Algae, Bollettino della Societá Paleontologica Italiana, Special Volume 1.Google Scholar
Nitecki, M. H., Webby, B. D., Spjeldnaes, N., and Yong-Yi, Z. 2004. Receptaculitids and algae, p. 336347. In Webby, B. D., Droser, M. L., Paris, F., and Percival, I. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York, 496 p.Google Scholar
Orbigny, A. D. d'. 1850. Prodrome de la paléontologie stratigraphique universelle des animaux mollusques et rayonnés, faisant suite au cours élémentaire de paléontologie et géologie stratigraphiques. Deuxième volume. Masson, 428 p.CrossRefGoogle Scholar
Pascher, A. 1914. Über Flagellaten und Algen. Berichte der deutsche botanischen Gesellschaft, 32:136160.Google Scholar
Pascher, A. 1931. Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstamme in die Stämme des Pflanzenreiches. Botanisches Centralblatt, Beiheft, 48:317332.Google Scholar
Pohlman, J. 1886. Fossils from the Waterlime Group near Buffalo. Bulletin of the Buffalo Society of Natural History, 5:2333.Google Scholar
Poncet, J. 1986. Les algues calcaires du Paléozoïque inférieur de la Baie d'Hudson et de l'Archipel arctique canadien. Bulletin Centres Recherche Exploration-Production Elf-Aquitaine, 10:259282.Google Scholar
Ruedemann, R. 1925. Some Silurian (Ontarian) faunas of New York. New York State Museum Bulletin 265, 84 p.Google Scholar
Schubert, R. J. 1907. Vorläufige Mitteilung über Foraminifera und Kalkalgen aus dem dalmatinischen Karbon. Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt Wien, 8:211214.Google Scholar
Scotese, C. R. 2001. Atlas of Earth History, PALEOMAP Project, Arlington, Texas, 52 p.Google Scholar
Seilacher, A., Reif, W. E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of Fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B, 311:523.Google Scholar
Shuysky, V. P. 1987. Green Algae (Chlorophyta), p. 38109. In Dubatolov, V. N. (ed.), Fossil Calcareous Algae, Akademia Nauk SSSR, Sibirskoe Otdelenie Institut Geologii Trudy. (In Russian).Google Scholar
Solms-Laubach, H., Grafzu, . 1887. Einleitung in die Paläophytologie. Arthur Felix, Leipzig, 431 p.Google Scholar
Spencer, J. 1884. Niagaran fossils. Transactions of the Academy of Science of St. Louis, 4:555610.Google Scholar
Stolley, E. 1893. Über silurische Siphoneen. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie, 2:135146.Google Scholar
Taylor, W. R. 1960. Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas. University of Michigan Press, Ann Arbor, 870 p.Google Scholar
Thayer, G. W., Murphey, P. L., and LaCroix, M. W. 1994. Responses of plant communities in western Florida Bay to the die-off of seagrasses. Bulletin of Marine Science, 54:718726.Google Scholar
Tinn, O., Meidlaa, T., Ainsaara, L., and Pani, T. 2009. Thallophytic algal flora from a new Silurian Lagerstätte. Estonian Journal of Earth Sciences, 58:3842.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F., Littler, D., Littler, M., Leliaert, F., and De Clerk, O. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution, 50:642653.CrossRefGoogle ScholarPubMed
Vologdin, A. G. 1966. Some species of Upper Paleozoic algae of eastern Mongolia, p. 3147. In Marinov, N. A. (ed.), Nauchnoissledovatel'skaia laboratoriia geologii zarubezhnykh stran., Ministerstvo geologii MNR, Materialy po geologii Mongol'skoi Narodnoi Respubliki: [sbornik statei], Nedra, Moskva. (In Russian).Google Scholar
Whitfield, R. P. 1894. On new forms of marine algae from the Trenton Limestone with observations of Buthograptus laxus Hall. American Museum of Natural History Bulletin, 6:351358.Google Scholar
Xiao, S. and Dong, L. 2006. On the morphology and ecological history of Proterozoic macroalgae, p. 5790. In Xiao, S. and Kaufman, A. J. (eds.), Neoproterozoic Geology and Paleobiology. Springer, Dordrecht, 300 p.CrossRefGoogle Scholar
Yang, R.-D., Mao, J.-R., and Zhao, Y.-L. 2001. New macroalgal fossils from Middle Cambrian Kaili biota in Guizhou Province, China. Acta Botanica Sinica, 43:742749.Google Scholar