Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-21T14:39:22.416Z Has data issue: false hasContentIssue false

Araucariaceous fossil woods from the Upper Triassic Ischigualasto Formation (San Juan Province, Argentina): paleofloristic and paleoclimatic implications

Published online by Cambridge University Press:  22 July 2022

Josefina Bodnar*
Affiliation:
División Paleobotánica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Ana Julia Sagasti
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Instituto de Recursos Minerales (INREMI-UNLP-CIC), Calle 64 3, B1904AMC La Plata, Buenos Aires, Argentina
Gustavo A. Correa
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, CIGEOBIO, CONICET, Av. España 400 (norte), J5400DNQ San Juan, San Juan, Argentina.
Victoria Miranda
Affiliation:
Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Av. 122 y 60, 1900 La Plata, Buenos Aires, Argentina
Florencia Medina
Affiliation:
Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Av. 122 y 60, 1900 La Plata, Buenos Aires, Argentina
*
*Corresponding author.

Abstract

In this contribution, fossil woods from the Valle de La Luna Member of the Upper Triassic Ischigualasto Formation at Ischigualasto Provincial Park, San Juan Province, Argentina, are described. The specimens are preserved as silica permineralization in tuffs intercalated with carbonaceous mudstone beds interpreted as distal floodplain facies. The fossil woods were assigned to the new species Agathoxylon argentinum since their anatomy differs from the known Mesozoic Gondwanan species of the genus Agathoxylon. The combination of characters present in the new taxon indicates an affiliation with the conifer family Araucariaceae. Signals of fungal-mediated wood decay were observed, comparable to the activity of basidiomycetes. Spherical structures attached to the walls of the tracheids were recognized and are interpreted as holocarpic chytrid fungi. The growth rings were quantitatively analyzed. Low values of percentage diminution, percentage latewood, and Ring Markedness Index, and a mean percentage skew of +11.5, were obtained, suggesting that the new species was an evergreen gymnosperm. The stratigraphic distribution and taxonomic composition of the Ischigualasto Formation fossil-plant-bearing levels were studied. A vegetation change is recorded in the fossil level bearing Agathoxylon argentinum n. sp., marked by the replacement of the corystosperm genera and a diminution of arboreal corystosperms. This floristic change, in addition to other evidence, indicates humid paleoclimatic conditions for the uppermost part of the Valle de La Luna Member of the Ischigualasto Formation.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K.L., Fraser, C.J., and Spicer, R.A., 1981, Anatomy and palaeoecology of Pseudofrenelopsis and associated conifers in the English Wealden: Palaeontology, v. 24, p. 759778.Google Scholar
Archangelsky, S., 1960, Nota preliminar sobre el hallazgo de Rhexoxylon en la cuenca de Ischigualasto, límite de las provincias de San Juan y La Rioja: Acta Geológica Lilloana, v. 3, p. 187190.Google Scholar
Archangelsky, S., 1968, Studies on Triassic fossil plants from Argentina. IV. The leaf genus Dicroidium and its possible relation to Rhexoxylon stems: Paleontology, v. 11, p. 500512.Google Scholar
Archangelsky, S., and Brett, D.W., 1961, Studies on Triassic fossil plants from Argentina. I. Rhexoxylon from the Ischigualasto formation: Philosophical Transactions of the Royal Society of London B., v. 244, p. 19.Google Scholar
Archangelsky, S., and Brett., D.W., 1963, Studies on Triassic fossil plants from Argentina II: Michelilloa waltoni nov. gen. et. spec.: Annals of Botany N.S., v. 27, p. 147154.CrossRefGoogle Scholar
Arnold, C.A., 1962, A Rhexoxylon-like stem from the Morrison Formation of Utah: American Journal of Botany, v. 49, p. 883886.CrossRefGoogle Scholar
Artabe, A.E., 1990, Revalidación del género triásico Zuberia Frenguelli 1943, Familia Corystospermaceae: Revista del Museo de La Plata (n.s.) Paleontología, v. 9, p. 145157.Google Scholar
Artabe, A.E., and Brea, M., 2003, A new approach to Corystospermales based on Triassic permineralized stems from Argentin: Alcheringa, v. 27, p. 209229.CrossRefGoogle Scholar
Artabe, A.E., and Zamuner, A.B., 2007, Elchaxylon, a new corystosperm based on permineralized stems from the Late Triassic of Argentina: Alcheringa, v. 31, p. 8596.CrossRefGoogle Scholar
Artabe, A.E., Morel, E.M., and Spalletti, L.A., 2001, Paleoecología de las floras triásicas argentinas, in Artabe, A.E., Morel, E.M., and Zamuner, A.B., eds., El Sistema Triásico en la Argentina: La Plata, Fundación Museo de La Plata ‘Francisco Pascasio Moreno’, p. 199225.Google Scholar
Artabe, A.E., Morel, E.M., and Ganuza, D.G., 2007, Las floras triásicas de la Argentina: Asociación Paleontológica Argentina, Publicación Especial, v.11, p. 7586.Google Scholar
Attims, Y., 1965, Etude anatomique et paléogéographique de quelques bois jurassiques du Maroc: Notes Du Service Geologique Du Maroc, v. 24, p. 3352.Google Scholar
Axsmith, B., 2006, The vegetative structure of a Lower Cretaceous conifer from Arkansas: further implications for morphospecies concepts in the Cheirolepidiaceae: Cretaceous Research, v. 27, p. 309317.CrossRefGoogle Scholar
Axsmith, B.J., Escapa, I.H., and Huber, P., 2008, An Araucarian conifer bract-scale complex from the Lower Jurassic of Massachusetts: implications for estimating phylogenetic and stratigraphic congruence in the Araucariaceae: Palaeontologia Electronica 11.3.13A, 9 p., http://palaeo-electronica.org/2008_3/152/index.htmlGoogle Scholar
Bailey, F.M., 1883, Synopsis of the Queensland Flora: Brisbane, J.C. Beal, Government printer, 890 p.Google Scholar
Bailey, J.F., and White, C.T., 1916, Contributions to the Queensland flora: Botany Bulletin, Department of Agriculture, Queensland, v. 18, p. 116.Google Scholar
Baldoni, A.M., 1980, Revisión de las especies del género Xylopteris (Corystospermaceae) en el Triásico de Argentina, Australia y Sud África: Ameghiniana, v. 17, p. 135155.Google Scholar
Bamford, M., 1999, Permo-Triassic fossil woods from the south African Karoo Basin: Paleontologia Africana, v. 35, p. 2540.Google Scholar
Bamford, M.K., 2016, Fossil woods from the Upper Carboniferous to Lower Jurassic Karoo Basin and the environmental interpretation, in Linol, B., and de Wit, M., eds., Origin and Evolution of the Cape Mountains and Karoo Basin: Cham, Springer, p. 158167.Google Scholar
Bamford, M.K., and Philippe, M., 2001, Gondwanan Jurassic–Early Cretaceous homoxylous woods: a nomenclatural revision of the genera with taxonomical notes: Review of Paleobotany and Palynology, v. 113, p. 287297.CrossRefGoogle Scholar
Bamford, M.K., Cairncross, B., and Lombard, H., 2020. Silicified fossil woods from the Late Permian Middleton Formation, Beaufort Group, Eastern Cape Province, South Africa and their palaeoenvironmental significance: South African Journal of Geology, v. 123, p. 465478.CrossRefGoogle Scholar
Beck, C.B., 2010, An Introduction to Plant Structure and Development: Plant Anatomy for the Twenty-First Century (second edition): Cambridge, Cambridge University Press, 459 p.Google Scholar
Benton, M.J., Bernardi, M., and Kinsella, C., 2018, The Carnian Pluvial Episode and the origin of dinosaurs: Journal of the Geological Society, v. 175, p. 10191026.CrossRefGoogle Scholar
Bhardwaj, D.C., 1953, Jurassic woods from the Rajmahal Hills Bihar: The Palaeobotanist, v. 2, p. 5970.Google Scholar
Bodenbender, G., 1911, Constitución geológica de la parte meridional de la Provincia de La Rioja y regiones limítrofes: Boletín de la Academia Nacional de Ciencias, v. 19, p. 5221.Google Scholar
Bodnar, J., 2008, Rhexoxylon cortaderitaense (Menéndez) comb. nov., a species of permineralized stems newly assigned to the Corystospermaceae, from the Triassic of Argentina: Alcheringa, v. 32, p. 171190.CrossRefGoogle Scholar
Bodnar, J., 2012, Estudios evolutivos del desarrollo en tallos fósiles de Corystospermaceae (Corystospermales, Spermatopsida): Revista del Museo Argentina de Ciencias Naturales n.s., v. 14, p. 143166.CrossRefGoogle Scholar
Bodnar, J., and Artabe, A.E., 2007, Estudio sistemático y paleodendrológico del leño de una Cupressaceae triásica de la Formación Ischigualasto, provincia de San Juan, Argentina: Ameghiniana, v. 44, p. 303319.Google Scholar
Bodnar, J., Escapa, I.H., Cúneo, R., and Gnaedinger, S., 2013, First record of conifer wood from the Cañadón Asfalto Formation (Early–Middle Jurassic), Chubut province, Argentina: Ameghiniana, v. 50, p. 227239.CrossRefGoogle Scholar
Bodnar, J., Coturel, E.P., Falco, J.I., and Beltrán, M., 2021, An updated scenario for the End-Permian Crisis and the recovery of Triassic land flora in Argentina: Historical Biology, v. 33, p. 36543672.CrossRefGoogle Scholar
Bonetti, M.I.R., 1966, Protojuniperoxylon ischigualastensis sp. nov. del Triásico de Ischigualasto (San Juan): Ameghiniana, v. 4, p. 211216.Google Scholar
Bose, M., and Maheshwari, H., 1974, Mesozoic conifers, in Surange, K., Lakhanpal, R., and Bhardwaj, D., eds., Aspects and Appraisal of Indian Palaeobotany: Lucknow, Birbal Sahni Institute of Palaeobotany, p. 212223.Google Scholar
Bose, M.N., Pal, P.K., and Harris, T.M., 1985, The Pentoxylon plant: Philosophical Transactions of the Royal Society, v. 310, p. 77108.Google Scholar
Boura, A., Bamford, M., and Philippe, M., 2021, Promoting a standardized description of fossil tracheidoxyls: Review of Palaeobotany and Palynology, v. 295, 104525.CrossRefGoogle Scholar
Boureau, E., 1948, Etude paléoxylologique du Sahara. I. Presence du Dadoxylon (Araucarioxylon) dallonii n. sp.: Bulletin du Muséum d'Histoire Naturelle, v. 20, p. 420426.Google Scholar
Boyle, D.G., Hyatt, A.D., Daszak, P., Berger, L., Longcore, J.E., Porter, D., Hengstberger, S.G., and Olsen, V., 2003, Cryo-archiving of Batrachochytrium dendrobatidis and other chytridiomycetes: Diseases of Aquatic Organisms, v. 56, p. 5964.CrossRefGoogle ScholarPubMed
Brea, M., 1997, Una nueva especie fósil del género Araucarioxylon Kraus 1870, emend. Maheshwari 1972 del Triásico de Agua de la Zorra, Uspallata, Mendoza, Argentina: Ameghiniana, v. 34, p. 485496.Google Scholar
Brea, M., Artabe, A.E., and Spalletti, L.A., 2008, Ecological reconstruction of a mixed Middle Triassic forest from Argentina: Alcheringa, v. 32, p. 365393.CrossRefGoogle Scholar
Brett, D., 1968, Studies on Triassic fossil plants from Argentina III. The trunk of Rhexoxylon : Palaeontology, v. 11, p. 236245.Google Scholar
Brongniart, A., and Gris, A., 1871, Observations sur diverses plantes nouvelles ou peu connues de la Nouvelle-Calédonie: Annales des Sciences Naturelles; Botanique, v. 5, p. 340404.Google Scholar
Buchholz, J., 1949, Addition to the Coniferous Flora of New Caledonia: Bulletin du Muséum National d'Histoire Naturelle, sér. 2, v. 21, p. 279286.Google Scholar
Césari, S.N., and Colombi, C.E., 2013, A new Late Triassic phytogeographical scenario in westernmost Gondwana: Nature Communications, v. 4, n. 1889, https://doi.org/10.1038/ncomms2917CrossRefGoogle ScholarPubMed
Césari, S.N., and Colombi, C.E., 2016, Palynology of the Late Triassic Ischigualasto Formation, Argentina: paleoecological and paleogeographic implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 449, p. 365384.CrossRefGoogle Scholar
Charrier, R., 1979, El Triásico de Chile y regiones adyacentes de Argentina: una reconstrucción paleogeográfica y paleoclimática: Comunicaciones, Departamento Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, v. 26, p. 137.Google Scholar
Colombi, C.E., and Parrish, J.T., 2008, Late Triassic environmental evolution in southwestern Pangea: plant taphonomy of the Ischigualasto Formation: Palaios, v. 23, p. 778795.CrossRefGoogle Scholar
Cookson, I.C., 1947, Plant microfossils from the lignites of Kerguelen Archipelago: Antarctic Research Expedition 1929–1931, Reports Series A, v. 2, p. 127142.Google Scholar
Creber, G.T., and Chaloner, W.G., 1984, Influence of environmental factors on the wood structure of living and fossil trees: The Botanical Review, v. 50, p. 357448.CrossRefGoogle Scholar
Crisafulli, A., and Herbst, R., 2008, Maderas gimnospérmicas de la Formación Solca (Pérmico Inferior), provincia de La Rioja, Argentina: Ameghiniana, v. 45, p. 737751.Google Scholar
Crisafulli, A., and Herbst, R., 2010, Leños gimnospérmicos de la Formación Llantenes (Triásico Superior), Provincia de Mendoza, Argentina: GAEA Journal of Geoscience, v. 6, p. 1420.CrossRefGoogle Scholar
Crisafulli, A., and Herbst, R., 2011, La Flora Triásica del Grupo El Tranquilo, provincia de Santa Cruz (Patagonia): Leños Fósiles: Ameghiniana, v. 4, p. 275288.CrossRefGoogle Scholar
Crisafulli, A., Herbst, R., and Storti, L.M., 2009, Maderas gimnospérmicas de la Formación Tres Islas (Pérmico Inferior) de Uruguay: GAEA Journal of Geoscience, v. 5, p. 114.CrossRefGoogle Scholar
Crisafulli, A., Dutra, T.L., and Herbst, R., 2016, In-situ Late Triassic fossil woods from the fluvial channel deposits of the Caturrita Formation, Faxinal do Soturno, Rio Grande do Sul, Brazil: GAEA - Journal of Science, v. 9, p. 3746.Google Scholar
Currie, B.S., Colombi, C.E., Tabor, N.J., Shipman, T.C., and Montañez, I.P., 2009, Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina: Journal of South American Earth Sciences, v. 27, p. 7487.CrossRefGoogle Scholar
Dal Corso, J. et al. 2020, Extinction and dawn of the modern world in the Carnian (Late Triassic): Science Advances, v. 6, n. 38, https://doi.org/10.1126/sciadv.aba0099CrossRefGoogle ScholarPubMed
Decombeix, A.L., Bomfleur, B., Taylor, E.L., and Taylor, T.N., 2014, New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica: Review of Paleobotany and Palynology, v. 203, p. 2234.CrossRefGoogle Scholar
Decombeix, A.L., Taylor, E.L., and Taylor, T.N., 2016, Bark anatomy of late Permian Glossopterid trees from Antarctica: IAWA Journal, v. 37, p. 444458.CrossRefGoogle Scholar
Degani-Schmidt, I., and Guerra-Sommer, M., 2016, Charcoalified Agathoxylon-type wood with preserved secondary phloem from the lower Permian of the Brazilian Parana basin: Review of Paleobotany and Palynology, v. 226, p. 2029.CrossRefGoogle Scholar
Del Fueyo, G.M., and Archangelsky, A., 2002, Araucaria grandifolia Feruglio from the Lower Cretaceous of Patagonia, Argentina: Cretaceous Research, v. 23, p. 265277.CrossRefGoogle Scholar
Del Fueyo, G.M., Carrizo, M.A., Poiré, D.G., and Lafuente Díaz, M.A., 2021, Recurrent volcanic activity recorded in araucarian wood from the Lower Cretaceous Springhill Formation, Patagonia, Argentina: palaeoenvironmental interpretations: Acta Palaeontologica Polonica, v. 66, p. 231253.CrossRefGoogle Scholar
Dettmann, M.E., Clifford, H.T., and Peters, M., 2012, Emwadea microcarpa gen. et sp. nov.: anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia: Alcheringa, v. 36, p. 217237.CrossRefGoogle Scholar
De Wit, M., Bamford, M., and Van Waarden, C., 2018, Fossil trees from the basal Triassic Lebung Group at the Makgaba site, west of Mokubilo, Botswana: Palaeontologia Africana, v. 52, p. 194200.Google Scholar
Dobruskina, I.A., 1969, Genus Scytophyllum (the morphology, epidermic texture and systematic position): Trudy GIN AN SSSR, v. 190, p. 3558. [in Russian]Google Scholar
Dupéron-Laudoueneix, M., 1976., Sur la présence de Dadoxylon (Araucarioxylon) dallonii Boureau dans la région de Fardiallah (Tchad): Congrés nacional des Sociétés savantes, 97, Sect. Sciences, v. 4, p. 6778.Google Scholar
Dupéron-Laudoueneix, M., and Lejal-Nicol, A., 1981, Sur deux bois homoxylés du Sud-Ouest de'l Égypte: Congrés nacional des Sociétés savantes, 106, Sect. Sciences, v. 1, p. 940.Google Scholar
Endlicher, S.L., 1847, Synopsis Coniferarum: St. Gallen, Scheitlin & Zollikofer, Sangalli, 368 p.Google Scholar
Engelund, E.T., Thygesen, L.G., Svensson, S., and Hill, C.A.S., 2013, A critical discussion of the physics of wood–water interactions: Wood Science and Technology, v. 47, p. 141161.CrossRefGoogle Scholar
Falcon-Lang, H.J., 2000a, A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: a new palaeoecological tool: Palaeontology, v. 43, p. 775783.CrossRefGoogle Scholar
Falcon-Lang, H.J., 2000b, The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 160, p. 317328.CrossRefGoogle Scholar
Farjon, A., 2010, A Handbook of the World's Conifers, Volume 1: Leiden, Brill, 526 p.CrossRefGoogle Scholar
Feistmantel, L., 1889, Obersichtliche Darstellung der Geologisch-Palaeontologischen Verhalmisse Sud-Afrikas. Th.1 Die Karroo-Formation und die dieselbe unterlagernden Schichten: Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften, v. 7, p. 189.Google Scholar
Franco, J. do A., 1952, Nomenclatura de algumas Coníferas: Anais do Instituto Superior de Agronomia (Lisboa), v. 19, p. 523.Google Scholar
Frenguelli, J., 1943, Reseña crítica de los géneros atribuídos a la “Serie de Thinnfeldia: Revista del Museo de La Plata (n.s.), Paleontología, v. 2, p. 225342.Google Scholar
Frenguelli, J., 1948, Estratigrafía y edad del llamado “Rético” en la Argentina: Sociedad Argentina de Estudios Geográficos GAEA, v. 8, p. 159309.Google Scholar
Frentzen, K., 1931, Studien uber die fossilen Hölzer der Sammelgattung Dadoxylon Endlicher: Abhandlungen der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, v. 16, p. 193 and v. 19, p. 1–51.Google Scholar
García Esteban, L., de Palacios, P., Guindeo, A., García-Esteban, Ly., Lázaro, I., González, L., Rodriguez, Y., García, F., Bobadilla, I., and Camacho, A. (eds.), 2002, Anatomía e identificación de maderas de coníferas a nivel de especie: Madrid, Ediciones Mundi-Prensa, 421 p.Google Scholar
García Esteban, L., de Palacios, P., Guindeo Casasús, A., and García Fernández, F., 2004, Characterisation of the xylem of 352 conifers: Investigación agraria, Sistemas y recursos forestales-INIA (España), v. 13, p. 452478.Google Scholar
García Esteban, L., de Palacios, P., Guindeo, A., and Fernández, F.G., 2007, Comparative anatomy of the wood of Abies pinsapo and its two Moroccan varieties: IAWA Journal, v. 28, p. 285300.CrossRefGoogle Scholar
García Esteban, L., de Palacios, P., García-Iruela, A., García-Fernández, F., García-Esteban, L., and González de Vega, D., 2021, Comparative wood anatomy in Pinaceae with reference to its systematic position: Forests, v. 12, 1706.CrossRefGoogle Scholar
Giraud, B., 1991, Les espèces du genre Dadoxylon depuis 1962: leur répartition et leur évolution du Permien à la fin du Mésozoïque: Review of Palaeobotany and Palynology, v. 67, p. 1339.CrossRefGoogle Scholar
Giraud, B., and Hankel, O., 1985, Bois fossiles des dépôts du Karoo du Bassin du Luwegu (Tanzanie méridionale): Annales de Paléontologie, v. 71, p. 159185.Google Scholar
Gnaedinger, S., 2006, Maderas de la Formación Piedra Pintada (Jurásico Temprano), provincia de Neuquén, Argentina: Revista del Museo Argentino de Ciencias Naturales nueva serie, v. 8, p. 171177.CrossRefGoogle Scholar
Gnaedinger, S., and Herbst, R., 2009, Primer registro de maderas gimnospérmicas de la Formación Roca Blanca (Jurásico Inferior), provincia de Santa Cruz, Argentina: Ameghiniana, v. 46, p. 5971.Google Scholar
Gnaedinger, S., and Zavattieri, A., 2020, Coniferous woods from the Upper Triassic of southwestern Gondwana, Tronquimalal Group, Neuquén Basin, Mendoza Province, Argentina: Journal of Paleontology, v. 94, p. 387416.CrossRefGoogle Scholar
Gnaedinger, S., García Massini, J.L., Bechis, F., and Zavattieri, A.M., 2015, Coniferous woods and wood decaying fungi from the El Freno Formation (Lower Jurassic), Neuquén Basin, Mendoza province, Argentina: Ameghiniana, v. 52, p. 447467.CrossRefGoogle Scholar
Golonka, J., 2007, Late Triassic and Early Jurassic palaeogeography of the world: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 244, p. 297307.CrossRefGoogle Scholar
Gorozhankin, I.N., 1904, Lektsii po morfologii i sistematike archegonialnyh rastenij. II, Pteridophyta, I, Archispermae: Moskva, A.I. Mamontov, 104 p. [in Russian]Google Scholar
Gothan, W., 1905, Zur Anatomie lebender und fossiler Gymnospermen-Hölzer: Abhandlungen zur preuβischen geologische Landesanstalt, v. 44, p. 1108.Google Scholar
Gothan, W., 1908, Die fossilen Hölzer von der Seymour und Snow Hill insel: Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903, v. 3, 133.Google Scholar
Gothan, W., 1912, Über die Gattung Thinnfeldia Ettingshausen: Abhandlung der Naturhistorische Gesellschaft zu Nümberg, v. 19, p. 6780.Google Scholar
Greguss, P., 1955, Identification of Living Gymnosperms on the Basis of Xylotomy: Budapest, Akadémiai Kiado, 508 p.Google Scholar
Gulbranson, E.L., Ryberg, P.E., Decombeix, A.L., Taylor, E.L., Taylor, T.N., and Isbell, J.L., 2014, Leaf habit of Late Permian Glossopteris trees from high-palaeolatitude forests: Journal of the Geological Society, v. 171, p. 493507.CrossRefGoogle Scholar
Gulbranson, E.L., Ciccioli, P.L., Montañez, I.P., Marenssi, S.A., Limarino, C.O., Schmitz, M.D., and Davydov, V., 2015, Paleoenvironments and age of the Talampaya Formation: The Permo-Triassic boundary in northwestern Argentina: Journal of South American Earth Sciences, v. 63, p. 310322.CrossRefGoogle Scholar
Halle, T.G., 1908, Zur Kenntnis der mesozoischen Equisetales Schwedens: Kungliga Svenska Vetenskapsakademiens Handlingar, v. 43, p. 156.Google Scholar
Harris, T.M., 1979, The Yorkshire Jurassic Flora. V. Coniferales: London, Trustees of the British Museum (Natural History), 196 p.Google Scholar
Hartig, T., 1848, Beiträge zur Geschichte der Pflanzen und zur Kenntnis der nordeutschen Braunkholen-Flora: Berlin, Bot. Zeitung, v. 6, p. 185190.Google Scholar
Hass, H., Taylor, T.N., and Remy, W., 1994, Fungi from the Lower Devonian Rhynie chert: mycoparasitism: American Journal of Botany, v. 81, p. 2937.CrossRefGoogle Scholar
Heady, R.D., Banks, J.G., and Evans, P.D., 2002, Wood anatomy of Wollemi Pine (Wollemia nobilis, Araucariaceae): IAWA Journal, v. 23, p. 339357.CrossRefGoogle Scholar
Henkel, J.B., and Hochstetter, W., 1865, Synopsis der Nadelhölzer, deren charakteristischen Merkmale nebst Andeutungen über ihre Cultur und Ausdauer in Deutschlands Klima: Stuttgart, Verlag der J.G. Cottaschen Buchhandlung, 446 p.CrossRefGoogle Scholar
Herbst, R., 1970, Estudio palinológico de la Cuenca Ischigualasto-Villa Unión, (Triásico), provincias de San Juan- La Rioja. I. Introducción. II. Monoaperturados: Ameghiniana, v. 7, p. 8397.Google Scholar
Herbst, R., 1971, Estudio palinológico de la Cuenca Ischigualasto-Villa Unión (Triásico), provs. San Juan-La Rioja. III. Esporas triletes: Ameghiniana, v. 9, p. 280288.Google Scholar
Hill, R.S., 1995, Conifer origin, evolution and diversification in the Southern Hemisphere, in Enright, N.J., and Hill, R.S, eds., Ecology of Southern Conifers: Melbourne, Melbourne University Press, 342 p.Google Scholar
Hooker, W.J., 1843, Figure and description of a new species of Araucaria, from Moreton Bay, New Holland, detected by J.T. Bidwill, Esq.: The London Journal of Botany, v. 2, p. 498506.Google Scholar
Hooker, W.J., 1852, Araucaria columnaris : Botanical Magazine, v. 78, t. 4635.Google Scholar
Hurdeal, V.G., Gentekaki, E., Hyde, K.D., and Jeewon, R., 2020, Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy: Biologia, v. 76, p. 421440.CrossRefGoogle Scholar
IAWA Committee, 2004, International Association of Wood Anatomists list of microscopic features for softwood identification: IAWA Journal, v. 25, p. 170.CrossRefGoogle Scholar
Jones, W.G., Hill, K.D., and Allen, J.M., 1995, Wollemia nobilis, a new living Australian genus and species in the Araucariaceae: Telopea, v. 6, p. 173176.CrossRefGoogle Scholar
Karsten, H., 1881, Deutsche Flora. Pharmaceutisch-medicinische Botanik. Ein Grundriss der systematischen Botanik zum Selbststudium für Aerzte, Apotheker und Botaniker: Berlin, J.M. Spaeth, 1284 p.Google Scholar
Kershaw, P., and Wagstaff, B., 2001, The southern conifer family Araucariaceae: history, status, and value for paleoenvironmental reconstruction: Annual Review of Ecology and Systematics, v. 32, p. 397414.CrossRefGoogle Scholar
Kloster, A.C., and Gnaedinger, S.C., 2018, Coniferous wood of Agathoxylon from the La Matilde Formation, (Middle Jurassic), Santa Cruz, Argentina: Journal of Paleontology, v. 92, p. 546567.CrossRefGoogle Scholar
Koch, K.H.E., 1869, Dendrologie. Bäume, Sträucher und Halbsträucher, welche in Mittel- und Nord-Europa im Freien kultivirt warden 2.2: Erlangen, F. Enke, 424 p.Google Scholar
Kokogián, D.A., Spalletti, L.A., Morel, E., Artabe, A.E., Martínez, R.N., Alcober, O.A., Milana, J.P., Zavattieri, A.M., and Papú, O.H., 1999, Los depósitos continentales triásicos, in Caminos, R., ed., Geología Regional Argentina: Buenos Aires, Secretaría de Estado de Minería de la Nación, p. 377398.Google Scholar
Kraus, G., 1870, Bois fossiles de coniferes, in Schimper, W.P., ed., Traite de Paleontologie vegetale, tome 2: Strasbourg, Baillere, p. 363385.Google Scholar
Kräusel, R., and Jain, K., 1964, New coniferous wood from the Rajmahal Hills, Bihar, India: The Palaeobotanist, v. 12, p. 5967.Google Scholar
Krings, M., Dotzler, N., Galtier, J., and Taylor, T.N., 2009, Microfungi from the upper Visean (Mississippian) of central France: Chytridiomycota and chytrid-like remains of uncertain affinity: Review of Palaeobotany and Palynology, v. 156, p. 319328.CrossRefGoogle Scholar
Kukachka, B.F., 1960, Identification of coniferous woods: Tappi Journal, v. 43, p. 887896.Google Scholar
Kuntze, C.E.O., 1898, Revisio generum plantarum vascularium omnium atque cellularium multarum secundum leges nomenclaturae internationales cum enumeratione plantarum exoticarum in itinere mundi collectarum, 3.3: Leipzig, A. Felix, 576 p.Google Scholar
Kunzmann, L., 2007, Neue Untersuchungen zu Araucaria Jussieu aus der europäischen Kreide: Palaeontographica B, v. 276, p. 97131.CrossRefGoogle Scholar
Kurzawe, F., and Merlotti, S., 2010, O complexo Dadoxylon-Araucarioxylon, Carbonífero e Permiano do Gondwana: estudo taxonômico do gênero Araucarioxylon: Pesquisas em Geociências, v. 37, p. 4150.CrossRefGoogle Scholar
Lambert, A.B., 1837, A description of the genus Pinus, illustrated with figures; directions relative to the cultivation, and remarks on the uses of the several species: also descriptions of many other new species of the family of Coniferae (edition 2.3): London, Messrs, unnumbered.Google Scholar
Lindley, J., and Hutton, W., 1831, The Fossil Flora of Great Britain: or Figures and Descriptions of the Vegetable Remains Found in a Fossil State in this Country, Volume 1, Part 1 (first edition): London, James Ridgway and Sons, 370 p.Google Scholar
Linnaeus, C., 1753, Species Plantarum, Volume 2: Holmiae, Impensis Laurentii Salvii, p. 5611200.Google Scholar
López-Gamundi, O.R., Espejo, I.S., Conaghan, P.J., and Powell, C.McA., 1994, Southern South America, in Veervers, J.J., and Powell, C.McA., eds., Permian–Triassic Pangean basins and foldbelts along the Panthalassan margin of Gondwanaland: Geological Society of America Memoir, v. 184, p. 281329.CrossRefGoogle Scholar
Loudon, J.C., 1829, An Encyclopædia of Plants (first edition): London, Longman, Rees, Orme, Brown and Green, 1159 p.Google Scholar
Lucas, R.C., and Lacey, W.S., 1981, A permineralized wood flora of probable Cenozoic age from King George Island, South Shetland Island: British Antarctic Survey Bulletin, v. 53, p. 147151.Google Scholar
Mancuso, A.C., Benavente, C.A., Irmis, R.B., and Mundil, R., 2020, Evidence for the Carnian Pluvial Episode in Gondwana: new multiproxy climate records and their bearing on early dinosaur diversification: Gondwana Research, v. 86, p. 104125.CrossRefGoogle Scholar
Martínez, R.N., Fernandez, E., and Alcober, O.A., 2011, A new advanced eucynodont (Synapsida, Cynodontia) from the Carnian–Norian Ischigualasto Formation, northwestern Argentina: Ameghiniana v. 48, p. R109.Google Scholar
Martínez, R.N., Apaldetti, C., Alcober, O.C., Colombi, C.E., Sereno, P.C., Fernandez, E., Santi Malnis, P., Correa, G.A., and Abelin, D., 2012, Vertebrate succession in the Ischigualasto Formation: Journal of Vertebrate Paleontology, v. 32, p. 1030.CrossRefGoogle Scholar
Martínez, R.N., Fernandez, E., and Alcober, O.A., 2013, A new non-mammaliaform eucynodont from the Carnian-Norian Ischigualasto Formation, northwestern Argentina: Revista Brasilera de Paleontología, v. 16, p. 6176.CrossRefGoogle Scholar
Masters, M.T., 1892, List of conifers and taxads in cultivation in the open air in Great Britain and Ireland: Journal of the Royal Horticultural Society of London, v. 14, p. 179256.Google Scholar
Melchor, R.N., 2007, Changing lake dynamics and sequence stratigraphy of synrift lacustrine strata in a half-graben: an example from the Triassic Ischigualasto–Villa Unión Basin, Argentina: Sedimentology, v. 54, p. 14171446.CrossRefGoogle Scholar
Merlotti, S., and Kurzawe, F., 2006, Estudo taxonômico do gênero Australoxylon Marguerier 1973 com a descrição de A. catarinensis sp. nov. para o Permiano Inferior, Bacia do Paraná, Brasil: Revista Brasileira de Paleontologia, v. 9, p. 7381.CrossRefGoogle Scholar
Milana, J.P., and Alcober, O., 1994, Modelo tectonosedimentario de la cuenca triásica de Ischigualasto (San Juan, Argentina): Revista de la Asociación Argentina, v. 49, p. 217235.Google Scholar
Miller, P., 1768, The Gardeners Dictionary (eighth edition): London, John & Francis Rivington, 1344 p.Google Scholar
Mirabelli, S.L., Pujana, R.R., Marenssi, S.A., and Santillana, S.N., 2018, Conifer fossil woods from the Sobral Formation (lower Paleocene, Western Antarctica): Ameghiniana, v. 55, p. 91108.CrossRefGoogle Scholar
Morel, E.M., Artabe, A.E., Zavattieri, A.M., and Bonaparte, J.F., 2001, Cronología del Sistema Triásico, in Artabe, A.E., Morel, E.M., and Zamuner, A.B., eds., El Sistema Triásico en la Argentina: La Plata, Fundación Museo de La Plata “Francisco Pascasio Moreno,” p. 227253.Google Scholar
Morel, E., Artabe, A., and Spalletti, L., 2003, Triassic floras of Argentina: biostratigraphy, floristic events and comparison with other areas of Gondwana and Laurasia: Alcheringa, v. 27, p. 231243.CrossRefGoogle Scholar
Mueller, F., 1860, Essay on the plants collected by Mr. Eugene Fitzalan, during Lieut. Smith's expedition to the estuary of the Burdekin: Melbourne, Government Printer, 19 p.Google Scholar
Nishida, M., Ohsawa, T., Nishida, H., and Rancusi, M.H., 1992, Permineralized coniferous woods from the XI Region of Chile, Central Patagonia: Research Institute of Evolutionary Biology, Scientifical Report, v. 7, p. 4759.Google Scholar
Noll, R., Rößler, R., and Wilde, V., 2005, 150 Jahre Dadoxylon. Zur Anatomie fossiler Koniferen- und Cordaitenhölzer aus dem Rotliegend des euramerischen Florengebietes; Veröffentlichungen des Museums für Naturkunde Chemnitz, v. 28, p. 2948.Google Scholar
Ogawa, Y., Hayashi, S., Degawa, Y., and Yaguchi, Y., 2001, Ramicandelaber, a new genus of the Kickxellales, Zygomycetes: Mycoscience, v. 42, p. 193199.CrossRefGoogle Scholar
Panti, C., Pujana, R.R., Zamaloa, M.C., and Romero, E.J., 2012, Araucariaceae macrofossil record from South America and Antarctica: Alcheringa, v. 36, p. 122.CrossRefGoogle Scholar
Penhallow, D.P., 1904, The anatomy of the Coniferales (continued): The American Naturalist, v. 38, p. 523554.CrossRefGoogle Scholar
Pérez Loinaze, V.S., Vera, E.I., Fiorelli, L., and Desojo, J.B., 2018, Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 502, p. 3151.CrossRefGoogle Scholar
Petriella, B., 1978, La reconstrucción de Dicroidium (Pteridospermopsida, Corystospermaceae): Obra Centenario Museo de La Plata, v. 5, p. 107110.Google Scholar
Philippe, M., 1993, Nomenclature génerique des trachéidoxyles fossiles mésozoïques à champs araucarioïdes: Taxon, v. 42, p. 7480.CrossRefGoogle Scholar
Philippe, M., 1995, Bois fossiles du Jurassique de Franche-Comté (nordest de la France): systématique et biogéographie: Palaeontographica, Abteilung B, v. 236, p. 45103.Google Scholar
Philippe, M., 2011, How many species of Araucarioxylon?: Comptes Rendus Palevol, v. 10, p. 201208.CrossRefGoogle Scholar
Philippe, M., and Bamford, M.K., 2008, A key to morphogenera used for Mesozoic conifer-like woods: Review of Palaeobotany and Palynology, v. 148, p. 184207.CrossRefGoogle Scholar
Philippe, M. et al. , 2004, Biogeography of Gondwanan terrestrial biota during the Jurassic–Early Cretaceous as seen from fossil wood evidence: Review of Palaeobotany and Palynology, v. 129, p. 141173.CrossRefGoogle Scholar
Philippe, M., Boura, A., Oh, C., and Pons, D., 2014, Shimakuroxylon a new homoxylous Mesozoic wood genus from Asia, with palaeogeographical and palaeoecological implications: Review of Palaeobotany and Palynology, v. 204, p. 1826.CrossRefGoogle Scholar
Poole, I., and Cantrill, D., 2001, Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora: Palaeontology, v. 44, p. 10811112.CrossRefGoogle Scholar
Pujana, R.R., Santillana, S., and Marenssi, S., 2014, Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae dominated forests: Review of Palaeobotany and Palynology, v. 200, p. 122137.CrossRefGoogle Scholar
Pujana, R.R., Raffi, M.E, and Olivero, E.B., 2017, Conifer fossil woods from the Santa Marta Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica: Cretaceous Research, v. 77, p. 2838.CrossRefGoogle Scholar
Ramos, V.A., and Kay, S.M., 1991, Triassic rifting and associated basalts in the Cuyo Basin, central Argentina, in Harmon, R.S., and Rapela, C.W., eds., Andean Magmatism and Its Tectonic Setting: Geological Society of America Special Paper 265, p. 7991.CrossRefGoogle Scholar
Record, S.J., 1918, Significance of resinous tracheids: Botanical Gazette, v. 66, p. 6167.CrossRefGoogle Scholar
Retallack, G.J., 1981, Middle Triassic megafossil plants from Long Gully, near Otematata, north Otago, New Zealand: Journal of the Royal Society of New Zealand, v. 1, p. 167200.CrossRefGoogle Scholar
Richard, L.C.M., 1810, Note Sur les Plantes dites Conifères: Annales du Museum National d'Histoire Naturelle, v.16, p. 196299.Google Scholar
Richard, L.C.M., 1826, Commentatio Botanica de Conifereis et Cycadeis: Stutgardiae, Sumptibus J. G. Cottae, 212 p.Google Scholar
Rogers, R.R., Swisher, C.C. III, Sereno, P.C., Monetta, A.M., Forster, C.A., and Martínez, R.N., 1993, The Ischigualasto tetrapod assemblage, Late Triassic, Argentina, and 40Ar/39Ar dating of dinosaur origins: Science, v. 260, p. 794797.CrossRefGoogle ScholarPubMed
Rößler, R., Philippe, M., van Konijnenburg-van Cittert, J.H.A., McLoughlin, S., Sakala, J., and Zijlstra, G, 2014, Which name(s) should be used for Araucaria-like fossil wood? Results of a poll: Taxon, v. 63, p. 177184.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., Stockey, R.A., and Hilton, J., 2012, The seed cone Eathiestrobus gen. nov.: fossil evidence for a Jurassic origin of Pinaceae: American Journal of Botany, v. 99, p. 708720.CrossRefGoogle ScholarPubMed
Ruffell, A., Simms, M.J., and Wignall, P.B., 2016, The Carnian Humid Episode of the Late Triassic: a review: Geological Magazine, v. 153, p. 271284.CrossRefGoogle Scholar
Sagasti, A.J., García Massini, J.L., Escapa, I.H., and Guido, D.M., 2018, Multitrophic interactions in a geothermal setting: arthropod borings, actinomycetes, fungi and fungal-like microorganisms in a decomposing conifer wood from the Jurassic of Patagonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 514, p. 3144.CrossRefGoogle Scholar
Sah, S.C.D., and Jain, K.P., 1964, Some fossil woods from the Jurassic of Rajmahal Hills, Bihar, India: The Palaeobotanist, v. 12, p. 169180.Google Scholar
Scagel, R.E., 1987, El reino vegetal: Barcelona, Ediciones Omega, 778 p.Google Scholar
Schmidt, O., 2006, Wood and Tree Fungi. Biology, Damage, Protection, and Use: Berlin, Springer, XII + 336 p.Google Scholar
Schumann, K.M., and Hollrung, M.U., 1889, Flora von Kaiser Wilhelms Land 11: Berlin, Asher und Co., 144 p.Google Scholar
Schwarze, F.W.M.R., 2007, Wood decay under the microscope: Fungal Biology Review, v. 21, p. 133170.CrossRefGoogle Scholar
Schwarze, F.W.M.R., Mattheck, C., and Engels, J., 2004, Fungal Strategies of Wood Decay in Trees (second edition): Heidelberg, Springer, 185 p.Google Scholar
Sharma, B.D., 1969, On Pentoxyleae remains from Amarjola in the Rajmahal Hills, India: Ameghiniana, v. 6, 5056.Google Scholar
Sharma, B.D., 1972, Guptoxylon endocentrica sp. nov. du Jurassique D'Amarjola daus les Rajmahal Hills (Inde): Extrait, du Bulletin Mensuel de La Société Linnéenne de Lyon, v. 21, p. 114120.CrossRefGoogle Scholar
Spalletti, L.A., Artabe, A.E., Morel, E.M., and Brea, M., 1999, Biozonación paleoflorística y cronoestratigráfica del Triásico argentino: Ameghiniana, v. 36, p. 419451.Google Scholar
Spalletti, L.A., Artabe, A.E., and Morel, E.M., 2003, Geological factors and evolution of southwestern Gondwana Triassic plants: Gondwana Research, v. 6, p. 119134.CrossRefGoogle Scholar
Stockey, R.A., 1982, The Araucariaceae: an evolutionary perspective: Review of Palaeobotany and Palynology, v. 37, p. 133154.CrossRefGoogle Scholar
Stockey, R.A., 1990, Antarctic and Gondwana conifers, in Taylor, T.N., and Taylor, E.L., eds., Antarctic Paleobiology: New York, Springer, 261 p.Google Scholar
Stockey, R.A., 1994, Mesozoic Araucariaceae: morphology and systematic relationship: Journal of Plant Research, v. 107, p. 493502.CrossRefGoogle Scholar
Stockey, R.A., and Ko, H., 1986, Cuticule micromorphology of Araucaria de Jussieu: Botanical Gazette, v. 147, p. 508548.CrossRefGoogle Scholar
Stopes, M.C., 1914, A New Araucarioxylon from New Zealand: Annals of Botany, v. 28, p. 341350.CrossRefGoogle Scholar
Stubblefield, S.P., Taylor, T.N., and Beck, C.B., 1985, Studies of Paleozoic fungi. IV. Wood-decaying fungi in Callixylon newberryi from the Upper Devonian: American Journal of Botany, v. 72, p. 17651774.CrossRefGoogle Scholar
Taylor, T.N., Remy, W., and Hass, H., 1992, Fungi from the Lower Devonian Rhynie chert: Chytridiomycetes: American Journal of Botany, v. 76, p. 389396.CrossRefGoogle Scholar
Taylor, T.N., Taylor, E.L., and Krings, M., 2009, Paleobotany, the Biology and Evolution of Fossil Plants: London, Academic Press, 1253 p.Google Scholar
Taylor, T.N., Krings, M., and Taylor, E.L., 2015, Fossil Fungi: London, Academic Press, 384 p.Google Scholar
Terada, K., Asakawa, T.O., and Nishida, H., 2006, Fossil wood assemblage from Cerro Dorotea, Última Esperanza, Magallanes (XII) region, Chile, in Nishida, H., ed., Post-Cretaceous Floristic Changes in Southern Patagonia, Chile: Tokyo, Faculty of Science and Engineering, Chuo University, p. 6790.Google Scholar
Thomson, R.B., 1914, On the comparative anatomy and affinities of the Araucarineœ: Philosophical Transactions of the Royal Society of London, Series B, Containing Papers of a Biological Character, v. 204, p. 150.Google Scholar
Thybring, E.E., Kymäläinen, M., and Rautkari, L., 2018, Moisture in modified wood and its relevance for fungal decay: iForest, v. 11, p. 418422.CrossRefGoogle Scholar
Torres, T.G., and Lemoigne, Y., 1989, Hallazgos de maderas fósiles de Angiospermas y Gimnospermas del Cretácico Superior en punta Williams, isla Livingston, islas Shetland del Sur, Antártida: Serie Científica Instituto Antártico Chileno, v. 39, p. 929.Google Scholar
Torres, T.G., and Philippe, M., 2002, Dos nuevas especies de Agathoxylon y Baieroxylon del Jurásico Inferior de La Ligua, Chile: datos paleoxilológicos en América del Sur: Revista Geológica de Chile, v. 29, p. 151165.CrossRefGoogle Scholar
Torres, T.G., Valenzuela, E., and González, I., 1982, Paleoxilología de Península Byers, Isla Livington, Antártida, Islas Sheetland del Sur. Antártica: Actas 3° Congreso Geológico Chileno (Concepción, 1982), v. 1, p. 321341.Google Scholar
Torres, T.G., Galleguillos, H., and Philippe, M., 2000, Maderas fósiles en el Monte Flora, Bahía Esperanza, Península Antártica: Actas 9° Congreso Geológico Chileno, v. 2, p. 386390.Google Scholar
Torres, T., Calderón, M., and Fadel Cury, L., 2009, Maderas fósiles de Gimnospermas en la Formación Yahgan, estratos de Tekenika, Isla Hoste, Chile: XII Congreso Geológico, abstract S12_020, p. 291.Google Scholar
Townrow, J.A., 1956, The genus Lepidopteris and its Southern Hemisphere species: Abhandlungen ut. Arbok d. Norske Videnskaps-Akademi, Oslo, I. Matematisk-Naturvitenskapelig Klasse, v. 2, p. 328.Google Scholar
Turland, N.J. et al. , eds., 2018, International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017: Regnum Vegetable, Volume 159: Glashütten, Koeltz Botanical Books.Google Scholar
Uliana, M.A., Biddle, K.T., and Cerdan, J., 1988, Mesozoic extension and the formation of Argentine sedimentary basins, in Tankard, A.J., and Balkwill, H.R., eds., Extensional tectonics and stratigraphy of the North Atlantic margins: American Association of Petroleum Geologists Memoir, v. 46, p. 599614.Google Scholar
Vera, E.I., and Perez Loinaze, V.S., 2022, Ecological interactions in conifers (Agathoxylon and Protocupressinoxylon) from the Punta del Barco Formation (Baqueró Group, upper Aptian), Patagonia, Argentina: Cretaceous Research, v. 129, 105035.CrossRefGoogle Scholar
Vera, E.I., Perez Loinaze, V.S., Llorens, M., and Passalia, M.G., 2020, Agathoxylon Hartig in the Lower Cretaceous Arroyo del Pajarito Member (Los Adobes Formation), Chubut Province, Argentina: Journal of South American Earth Sciences, v. 100, 102562.CrossRefGoogle Scholar
Vieillard, E., 1862, Plantes utiles de la Nouvelle-Callédonie: Annales des Sciences Naturelles; Botanique, sér. 4, v. 16, p. 2876.Google Scholar
Walkom, A.B., 1925. Notes on some Tasmanian Mesozoic plants: Papers and Proceedings of the Royal Society of Tasmania, v. 1, p. 7389.Google Scholar
Warburg, O., 1900, Monsunia, Beiträge zur Kenntniss der Vegetation des Süd- und Ostasiatischen Monsungebietes: Leipzig, Verlag von Wilhelm Engelmann, 207 p.Google Scholar
Yrigoyen, M.R., and Stover, L.E., 1970, La palinología como elemento de correlación del Triásico en la Cuenca Cuyana: Actas IV Jornadas Geológicas Argentinas, v. 3, p. 427447.Google Scholar
Zamuner, A.B., 1992, Estudio de una tafoflora de la localidad tipo de la Formación Ischigualasto (Neotrías), Provincia de San Juan [Ph.D. thesis]: La Plata, Universidad Nacional de La Plata, 97 p.Google Scholar
Zamuner, A.B., and Artabe, A.E., 1990, El género Scytophyllum Bornemann 1856 (Familia Peltaspermaceae Thomas), un nuevo representante de la Flora Triásica de Argentina: Revista del Museo de La Plata, n.s. paleontología, v. 54, p. 131144.Google Scholar
Zamuner, A.B., and Falaschi, P., 2005, Agathoxylon matildense n. sp., leño araucariáceo del Bosque Petrificado del Cerro Madre e Hija, Formación La Matilde (Jurásico medio), Provincia de Santa Cruz, Argentina: Ameghiniana, v. 42, p. 339346.Google Scholar
Zamuner, A.B., Zavattieri, A.M., Artabe, A.E., and Morel, E.M., 2001, Paleobotánica, in Artabe, A.E., Morel, E.M., and Zamuner, A.B., eds., El Sistema Triásico en la Argentina:La Plata, Fundación Museo de La Plata “Francisco Pascasio Moreno,” p. 143184.Google Scholar
Zhou, Z., 1983, A heterophyllous conifer from the Cretaceous of east China: Palaeontology, v. 26, p. 789811.Google Scholar